Navegando por Assunto "Vegetable oils as fuel"
Agora exibindo 1 - 1 de 1
- Resultados por página
- Opções de Ordenação
Item Acesso aberto (Open Access) Produção de biodiesel a partir do processamento das oleaginosas amazônicas compadre-do-azeite (Plukenethia polyadenia) e comadre-do-azeite (Onphalea diandra)(Universidade Federal do Pará, 2014-06) FURTADO, Matheus Braga; MACÊDO, Emanuel Negrão; http://lattes.cnpq.br/8718370108324505; FARIA, Lênio José Guerreiro de; http://lattes.cnpq.br/7428609361678173Analyse experimentally the production of biodiesel from oilseeds processing compadre of Amazonian oil (plukenethia polyadenia) and Ruth-of-oil (Aubrey onphalea), as a potentially viable alternative to compose the energy matrix. Since the Industrial Revolution in the 19th century, the world energy matrix has always been based on fossil fuels. With the scarcity of such fuels, the rise of prices caused with the constant conflicts in major producing regions, has become the research into renewable sources increasingly attractive. The study of new sources of vegetable oils as alternative energy is important for the Country, particularly for the Amazon; enabling structure of oilseeds production chains in the region, generating employment in the field, distributional effects on regional economy and a vector of sustainable development in the Amazon, no aggression to the environment. The purpose of this work is to study two species of the family euphorbiaceae, lianas and polyadenia Onphalea Plukenethia diandra, better known as compadre of the olive oil and the olive oil Cummer respectively, oil-producing; extract and characterize them, suggesting possible applications and using them for the production of biodiesel through Transesterification using methyl potassium hydroxide as a catalyst, in the case the process based on statistical tests planned. The influence of input variables: oil/alcohol concentration, temperature and concentration of catalyst on biodiesel yield response by response surface methodology (RSM) employing the Box-Behenken planning. The aim is thus to add value to a tailing kaolin processing industry, using zeolites produced this material as a catalyst to KOH, comparing the efficiencies of the two treatments. The Box-planning Benhken proved efficient to optimize the homogeneous catalysis of the biodieseis, concluding that the concentration of the catalyst was the variable controlling the production process of biodieseis, and the increase of its concentration cause negative and undesirable influence the yield of the product.