Logo do repositório
Tudo no RIUFPA
Documentos
Contato
Sobre
Ajuda
  • Português do Brasil
  • English
  • Español
  • Français
Entrar
Novo usuário? Clique aqui para cadastrar. Esqueceu sua senha?
  1. Início
  2. Pesquisar por Assunto

Navegando por Assunto "indice ponderado e defasado de atraso de fase"

Filtrar resultados informando as primeiras letras
Agora exibindo 1 - 1 de 1
  • Resultados por página
  • Opções de Ordenação
  • Carregando...
    Imagem de Miniatura
    DissertaçãoAcesso aberto (Open Access)
    Classificação de eletroencefalogramas epiléticos em estado de repouso com aplicação de classificadores lineares e um atributo derivado da densidade espectral de potência
    (Universidade Federal do Pará, 2019-12-04) FIEL, José de Santana; PEREIRA JÚNIOR, Antonio; http://lattes.cnpq.br/3239362677711162
    Milhões de brasileiros são afetados pela epilepsia e o acesso ao diagnóstico precoce é crucial para o seu tratamento adequado. No entanto, o diagnóstico de epilepsia depende da avaliação de registros eletroencefalográficos (EEG) de longa duração realizados por profissionais treinados, transformando-o em um processo oneroso que não está imediatamente disponível para muitos pacientes no Brasil. Assim, o presente trabalho propõe uma metodologia para a classificação automática do EEG de indivíduos epiléticos, que utiliza registros de EEG de curta duração obtidos com o paciente em repouso. O sistema é baseado em algoritmos de aprendizado de máquina que usam um atributo extraído da densidade espectral de potência dos sinais de EEG. Esse atributo é uma estimativa da conectividade funcional entre os pares de canais de EEG e é chamado debiased weighted phase-lag index (dWPLI). Os algoritmos de classificação foram análise discriminante linear (LDA) e máquinas de vetores de suporte (SVM). Os sinais de EEG foram adquiridos durante o estado interictal, isto é, entre convulsões e não tinham atividade epileptiforme. Registros EEG 11 pacientes epiléticos e 7 indivíduos saudáveis foram utilizados para avaliar o desempenho do método proposto. Ambos os algoritmos atingiram seu desempenho máximo de classificação, 100 % de precisão e área sob a curva de característica de operação do receptor (AUROC), quando um vetor de característica com 190 atributos foi usado como entrada. Os resultados mostram a eficácia do sistema proposto, dado seu alto desempenho de classificação.
Logo do RepositórioLogo do Repositório
Nossas Redes:

DSpace software copyright © 2002-2025 LYRASIS

  • Configurações de Cookies
  • Política de Privacidade
  • Termos de Uso
  • Entre em Contato
Brasão UFPA