Use este identificador para citar ou linkar para este item: https://repositorio.ufpa.br/jspui/handle/2011/16662
Tipo: Dissertação
Data do documento: 20-Jun-2023
Autor(es): MEJIA, Edna Sofia Solano
Primeiro(a) Orientador(a): AFFONSO, Carolina de Mattos
Título: Previsão da irradiação solar utilizando método ensemble para seleção de atributos e algoritmos de aprendizado de máquina
Agência de fomento: 
Citar como: MEJIA, Edna Sofia. Previsão da irradiação solar utilizando método ensemble para seleção de atributos e algoritmos de aprendizado de máquina. Orientador: Carolina de Mattos Affonso. 2023. 106 f. Dissertação (Mestrado em Engenharia Elétrica) - Instituto de Tecnologia, Universidade Federal do Pará, Belém, 2023. Disponível em:https://repositorio.ufpa.br/jspui/handle/2011/16662 . Acesso em:.
Resumo: A previsão precisa da irradiação solar é essencial para a gestão eficaz de sistemas de energia com geração fotovoltaica significativa. Algoritmos de aprendizado de máquina, que utilizam dados históricos e padrões para fazer previsões, desempenham um papel crucial nessa tarefa. Um aspecto chave é o uso de modelos ensemble, que combinam as previsões de vários algoritmos para melhorar a precisão e confiabilidade das previsões. Neste estudo, modelos ensemble são utilizados para aprimorar o desempenho das previsões, agregando as previsões de diferentes algoritmos. Além disso, o trabalho propõe um método de seleção de atributos ensemble, que envolve identificar os parâmetros de entrada mais relevantes e suas observações passadas relacionadas. Essa abordagem tem como objetivo otimizar os atributos de entrada utilizados pelos algoritmos de aprendizado de máquina, garantindo que apenas as informações mais pertinentes sejam consideradas para previsões precisas de irradiação solar. Ao aproveitar as habilidades de múltiplos algoritmos e selecionar os atributos mais informativos, a abordagem ensemble oferece uma estrutura robusta para melhorar a precisão das previsões de irradiação solar. O desempenho de vários algoritmos de aprendizado de máquina, incluindo modelos ensemble, é comparado para previsão de irradiação solar em dias com diferentes padrões climáticos, utilizando entradas endógenas e exógenas. Os algoritmos considerados são AdaBoost, SVR, RF, XGBT, CatBoost, VOA e VOWA. A seleção de atributos ensemble proposta depende dos algoritmos RF, IM e Relief. A precisão da previsão é avaliada com base em várias medidas usando um banco de dados real da cidade de Salvador, Brasil. Diferentes previsões climáticas são consideradas: 1 hora, 2 horas, 3 horas, 6 horas, 9 horas e 12 horas com antecedência. Os resultados numéricos mostram que a seleção de atributos ensemble proposta melhora a precisão da previsão e que o modelo VOWA selecionado com os algoritmos de melhor desempenho apresenta previsões com maior precisão do que os outros algoritmos em diferentes horizontes de previsão. Esta pesquisa demonstra a eficácia dos modelos ensemble e as técnicas de seleção de atributos na melhoria da previsão de irradiância solar, fornecendo insights valiosos para a gestão eficiente de sistemas de energia.
Abstract: Accurate forecasting of solar irradiance is essential for effective management of power systems with significant photovoltaic generation. Machine learning algorithms, which leverage historical data and patterns to make predictions, play a crucial role in this task. One key aspect is the use of ensemble models that combine the predictions of multiple algorithms to improve forecast accuracy and reliability. In this study, ensemble models are utilized to enhance the forecasting performance by aggregating the predictions of different algorithms. Moreover, the paper proposes an ensemble feature selection method, which involves identifying the most relevant input parameters and their related past observations. This approach aims to optimize the input features used by the machine learning algorithms, ensuring that only the most pertinent information is considered for accurate solar irradiance forecasts. By leveraging the strengths of multiple algorithms and selecting the most informative features, the ensemble approach offers a robust framework for improving the accuracy of solar irradiance predictions. The performance of several machine learning algorithms, including ensemble models, is compared for solar irradiance forecasting on days with different weather patterns using endogenous and exogenous inputs. The algorithms considered are AdaBoost, SVR, RF, XGBT, CatBoost, VOA, and VOWA. The proposed ensemble feature selection relies on the RF, IM, and Relief algorithms. The forecast accuracy is evaluated based on several metrics using a real database of the city of Salvador, Brazil. Different weather forecasts are considered: 1 hour, 2 hours, 3 hours, 6 hours, 9 hours, and 12 hours in advance. Numerical results show that the proposed ensemble feature selection improves forecast accuracy, and that the VOWA model selected with the best-performing algorithms presents forecasts with higher accuracy than the other algorithms at different forecast time horizons. This research demonstrates the effectiveness of ensemble models and feature selection techniques in enhancing solar irradiance forecasting, providing valuable insights for efficient power system management.
Palavras-chave: Geração de energia fotovoltaica
Aprendizado de máquina
Previsão da irradiação solar
Clusterização
Aprendizagem ensemble
Photovoltaic energy generation
Machine learning
Solar radiation forecasting,
Área de Concentração: SISTEMAS DE ENERGIA ELÉTRICA
Linha de Pesquisa: SISTEMAS ELÉTRICOS DE POTÊNCIA
CNPq: CNPQ::ENGENHARIAS::ENGENHARIA ELETRICA::SISTEMAS ELETRICOS DE POTENCIA
País: Brasil
Instituição: Universidade Federal do Pará
Sigla da Instituição: UFPA
Instituto: Instituto de Tecnologia
Programa: Programa de Pós-Graduação em Engenharia Elétrica
Tipo de Acesso: Acesso Aberto
Attribution-NonCommercial-NoDerivs 3.0 Brazil
Fonte URI: Disponível na internet via correio eletrônico: bibliotecaitec@ufpa.br
Aparece nas coleções:Dissertações em Engenharia Elétrica (Mestrado) - PPGEE/ITEC

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
Dissertacao_PrevisaoIrradiacaoSolar.pdf5,97 MBAdobe PDFVisualizar/Abrir


Este item está licenciado sob uma Licença Creative Commons Creative Commons