Local updates and client selection strategies for federated learning systems

dc.contributor.advisor-co1ROSÁRIO, Denis Lima do
dc.contributor.advisor-co1Latteshttp://lattes.cnpq.br/8273198217435163
dc.contributor.advisor-co1ORCIDhttps://orcid.org/0000-0003-1119-2450
dc.contributor.advisor1CERQUEIRA, Eduardo Coelho
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/1028151705135221
dc.contributor.advisor1ORCIDhttps://orcid.org/0000-0003-2162-6523
dc.contributor.memberCOSTA, Allan Douglas Bento da
dc.contributor.memberMEDEIROS, Iago Lins de
dc.contributor.memberSANTOS, Hugo Leonardo Melo dos
dc.contributor.member1Latteshttp://lattes.cnpq.br/2599065838802816
dc.contributor.member1Latteshttp://lattes.cnpq.br/7024608706674939
dc.contributor.member1Latteshttp://lattes.cnpq.br/5229753727213953
dc.contributor.member1ORCIDhttps://orcid.org/0000-0002-7068-8889
dc.contributor.member1ORCIDhttps://orcid.org/0000-0003-4758-0519
dc.contributor.member1ORCID***
dc.creatorSANTOS, Alex Barros dos
dc.creator.Latteshttp://lattes.cnpq.br/9621826007236811
dc.creator.ORCID***
dc.date.accessioned2026-02-11T20:01:17Z
dc.date.available2026-02-11T20:01:17Z
dc.date.issued2025-03-10
dc.description.abstractFederated Learning (FL) has emerged as a promising approach for enabling collab-orative machine learning across distributed clients while preserving data privacy. However, FL systems face significant challenges due to non-IID data distributions, system hetero-geneity, and communication efficiency limitations. This thesis proposes novel strategies to enhance the performance of FL through adaptive local update schemes and intelligent client selection mechanisms. First, we conduct an empirical evaluation of the impact of lo-cal update configurations on the convergence and generalization of popular FL algorithms, namely FedAVG and FedADAM. Our analysis reveals that increasing the number of local training epochs can accelerate convergence but also risks model overfitting, thereby re-ducing generalization. To mitigate this trade-off, we propose an adaptive controller that dynamically adjusts the number of local epochs using a Poisson distribution. Second, we introduce MESFLA (Model Efficiency through Selective Federated Learning Algorithm), a cluster-based client selection mechanism that considers both model weights and data size characteristics to strategically select participants for each FL training round. MES-FLA employs the CKA (Centered Kernel Alignment) algorithm to cluster clients based on model weight similarity and then selects the most relevant clients from each cluster. The adaptive local update controller dynamically balances convergence speed and model generalization, while MESFLA’s intelligent client selection optimizes performance in heterogeneous data settings. MESFLA consistently achieves higher model accuracy, faster convergence, and requires fewer communication rounds between clients and the server, demonstrating its effectiveness in non-IID data environments typical of real-world FL scenarios.
dc.description.affiliationTRT8 - Tribunal Regional do Trabalho da 8ª Região
dc.identifier.citationSANTOS, Alex Barros dos. Local updates and client selection strategies for federated learning system. Orientador: Eduardo Coelho Cerqueira. 2025. 86 f. Tese (Doutorado em Engenharia Elétrica) - Instituto de Tecnologia, , Universidade Federal do Pará, Belém, 2025. Disponível em: https://repositorio.ufpa.br/handle/2011/18000. Acesso em:.
dc.identifier.urihttps://repositorio.ufpa.br/handle/2011/18000
dc.languageporpt_BR
dc.language.isoen
dc.publisherUniversidade Federal do Parápt_BR
dc.publisher.countryBrasilpt_BR
dc.publisher.departmentInstituto de Tecnologiapt_BR
dc.publisher.initialsUFPApt_BR
dc.publisher.programPrograma de Pós-Graduação em Engenharia Elétricapt_BR
dc.rightsAcesso Abertopt_BR
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internationalen
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.source.uriDisponível na internet via correio eletrônico: bibliotecaitec@ufpa.br
dc.subjectFederated Learning
dc.subjectNon-iid
dc.subjectClient Selection
dc.subjectIoT
dc.subjectCommunication efficiency
dc.subject.areadeconcentracaoCOMPUTAÇÃO APLICADA
dc.subject.cnpqCNPQ::ENGENHARIAS::ENGENHARIA ELETRICA
dc.subject.linhadepesquisaREDES E SISTEMAS DISTRIBUIDOS
dc.titleLocal updates and client selection strategies for federated learning systems
dc.typeTesept_BR

Arquivo(s)

Pacote Original

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
Tese_LocalUpdatesClient.pdf
Tamanho:
3.66 MB
Formato:
Adobe Portable Document Format

Licença do Pacote

Agora exibindo 1 - 1 de 1
Nenhuma Miniatura disponível
Nome:
license.txt
Tamanho:
1.85 KB
Formato:
Item-specific license agreed upon to submission
Descrição: