Previsão de geração de energia fotovoltaica utilizando transformação de séries temporais em imagens e redes neurais convolucionais bidimensionais

Carregando...
Imagem de Miniatura

Data

2023-10-26

Título da Revista

ISSN da Revista

Título de Volume

item.page.theme

Editora(s)

Universidade Federal do Pará

Tipo de acesso

Acesso Aberto
Attribution-NonCommercial-NoDerivs 3.0 Brazilaccess-logo

Contido em

Citação

MONTEIRO, Diego Ramiro Melo. Previsão de geração de energia fotovoltaica utilizando transformação de séries temporais em imagens e redes neurais convolucionais bidimensionais. Orientadora: Adriana Rosa Garcez Castro. 2023. 79 f. Dissertação (Mestrado em Engenharia Elétrica) - Instituto de Tecnologia, Universidade Federal do Pará, Belém, 2023. Disponível em:https://repositorio.ufpa.br/jspui/handle/2011/16656 . Acesso em:.

DOI

Este trabalho apresenta uma nova abordagem baseada em Rede Neural Convolucional Bidimensional (Convolutional Neural Network – CNN) e técnicas de transformação de séries temporais em imagens, como Campo Angular Gramiano (Gramian Angular Field – GAF) e Gráfico de Recorrência (Recurrence Plot – RP), para previsão em curto prazo da geração de energia elétrica de uma microusina fotovoltaica conectada à rede elétrica, localizada no Centro de Excelência em Eficiência Energética da Amazônia – CEAMAZON, da Universidade Federal do Pará (UFPA). As técnicas de GAF e de RP foram utilizadas para transformação das séries temporais em imagens para serem utilizadas como entrada para a CNN. A previsão de geração de energia elétrica com maior precisão possibilita ao usuário conhecer com maior grau de acerto quais os possíveis custos para implantação da rede e os prazos para retorno financeiro, além de avaliar com maior assertividade a disponibilidade de carga que poderá ser conectada ao sistema. Os resultados da previsão com a utilização de GAF e RP em rede CNN 2D foram comparados com resultados utilizando outros tipos de rede neurais já consolidadas na área, como a Perceptron Multicamadas e a CNN 1D, tendo a CNN 2D obtido em alguns casos valores RMSE próximos ou um pouco inferiores, mostrando assim a aplicabilidade da utilização de imagens obtidas através de transformação das séries temporais de energia fotovoltaica em rede CNN 2D para o problema.

Agência de Fomento

browse.metadata.ispartofseries

item.page.isbn

Fonte

item.page.dc.location.country

Citação

MONTEIRO, Diego Ramiro Melo. Previsão de geração de energia fotovoltaica utilizando transformação de séries temporais em imagens e redes neurais convolucionais bidimensionais. Orientadora: Adriana Rosa Garcez Castro. 2023. 79 f. Dissertação (Mestrado em Engenharia Elétrica) - Instituto de Tecnologia, Universidade Federal do Pará, Belém, 2023. Disponível em:https://repositorio.ufpa.br/jspui/handle/2011/16656 . Acesso em:.