Detecção de danos em superfícies geotécnicas com redes neurais convolucionais de baixa complexidade

Carregando...
Imagem de Miniatura

Tipo

Data

2024-05-29

Título da Revista

ISSN da Revista

Título de Volume

item.page.theme

Editora(s)

Universidade Federal do Pará

Tipo de acesso

Acesso Aberto
Attribution-NonCommercial-NoDerivs 3.0 Brazilaccess-logo

Contido em

Citação

ARAÚJO, Thabatta Moreira Alves de. Título: Detecção de danos em superfícies geotécnicas com redes neurais convolucionais de baixa complexidade. Orientador: Carlos Renato Lisboa Francês. 2024. 139 f. Tese (Doutorado em Engenharia Elétrica) - Instituto de Tecnologia, Universidade Federal do Pará, Belém, 2024. Disponível em: https://repositorio.ufpa.br/jspui/handle/2011/16621. Acesso em:.

DOI

A maioria dos desastres naturais resulta de eventos geodinâmicos, como deslizamentos de terra e colapso de estruturas geotécnicas. Essas falhas causam catástrofes que impactam diretamente o meio ambiente e causam perdas financeiras e humanas. A inspeção visual é o principal método para detectar falhas em superfícies de estruturas geotécnicas. Todavia, as visitas no local podem ser arriscadas devido à possibilidade de solo instável. Além disso, o design do terreno e as condições de instalação hostis e remotas inviabilizam o acesso a essas estruturas. Quando uma avaliação rápida e segura é necessária, a análise por visão computacional torna-se uma alternativa. No entanto, estudos em técnicas de visão computacional ainda precisam ser explorados neste campo devido às particularidades da engenharia geotécnica, como dados públicos limitados, redundantes e escassos. Neste contexto, esta tese apresenta uma abordagem com Redes Neurais Convolucionais para a identificação de defeitos na superfície de estruturas geotécnicas com o objetivo de reduzir a dependência de inspeções no local conduzidas por humanos. Para tanto, foram coletadas imagens de taludes às margens de uma rodovia brasileira, com o auxílio de veículo aéreo não tripulado (VANT) e dispositivos móveis. Em seguida, foram exploradas arquiteturas de baixa complexidade para construir um classificador binário capaz de detectar em imagens falhas aparentes a olho nu humano. A arquitetura composta por 3 camadas convolucionais, cada uma com 32 filtros, seguidas por duas camadas densas de 128 neurônios cada, e saída com um neurônio apresentou acurácia de 94,26%. A avaliação de desempenho com o conjunto de teste obteve índice AUC de 0,99, matriz de confusão e precisão-revocação (AUPRC) que indicam desempenho robusto do classificador mesmo com desequilíbrio de classes, ao mesmo tempo que mantém uma baixa complexidade computacional, tornando-a adequada para aplicações práticas em campo. As contribuições da tese incluem a disponibilização de banco de imagens, a obtenção de um modelo de classificação adequado para dados escassos e desequilibrados e recursos computacionais limitados, e uma estratégia para automação da inspeção em estruturas geotécnicas.

Agência de Fomento

browse.metadata.ispartofseries

item.page.isbn

Fonte

item.page.dc.location.country

Citação

ARAÚJO, Thabatta Moreira Alves de. Título: Detecção de danos em superfícies geotécnicas com redes neurais convolucionais de baixa complexidade. Orientador: Carlos Renato Lisboa Francês. 2024. 139 f. Tese (Doutorado em Engenharia Elétrica) - Instituto de Tecnologia, Universidade Federal do Pará, Belém, 2024. Disponível em: https://repositorio.ufpa.br/jspui/handle/2011/16621. Acesso em:.