Classificação de ransomware utilizando MLP, redução de dimensionalidade e balanceamento de classes

Carregando...
Imagem de Miniatura

Data

2023-07-03

Título da Revista

ISSN da Revista

Título de Volume

item.page.theme

Editora(s)

Universidade Federal do Pará

Tipo de acesso

Acesso Aberto
Attribution-NonCommercial-NoDerivs 3.0 Brazilaccess-logo

Contido em

Citação

PEREIRA, George Tassiano Melo. Classificação de ransomware utilizando MLP, redução de dimensionalidade e balanceamento de classes. Orientador: Claudomiro de Souza de Sales Júnior. 2023. 56 f. Dissertação (Mestrado em Engenharia Elétrica) - Instituto de Tecnologia, Universidade Federal do Pará, Belém, 2023. Disponível em:https://repositorio.ufpa.br/jspui/handle/2011/16641 . Acesso em:.

DOI

Ransomware é um tipo de malware que impede ou limita o acesso do usuário ao sistema e arquivos até que um resgate seja pago. Combater essa ameaça é difícil devido à sua disseminação rápida e às constantes mudanças nas técnicas de criptografia utilizadas. Algoritmos de aprendizado de máquina, como Redes Neurais Artificiais, têm sido apontados como ferramentas promissoras na classificação de ransomware, porque elas podem aprender a identificar padrões e características complexas em grandes quantidades de dados. Isso permite que as redes neurais sejam treinadas com exemplos de amostras de software malicioso, incluindo ransomware, e depois sejam capazes de classificar novos exemplos com alta precisão. Além disso, as redes neurais também são capazes de aprender e se adaptar a mudanças no comportamento do malware, tornando-as ferramentas eficazes para a detecção de novos tipos de ransomware. Neste trabalho, é explorado três tipos de classificação de ransomware por RNA dentro de um pipeline composto com redução de dimensionalidade por Kernel PCA e balanceamento de classes com a abordagem de superamostragem aleatória. A MLP ( Multi-layer Perceptron) alcançou uma média de 98% de acurácia na classificação binária e 85% de acurácia na classificação de família com goodware, onde tais valores superam os resultados anteriores e demonstram assim a eficácia da inclusão do balanceamento de classes na melhoria do modelo de detecção de ransomware.

Agência de Fomento

browse.metadata.ispartofseries

item.page.isbn

Fonte

item.page.dc.location.country

Citação

PEREIRA, George Tassiano Melo. Classificação de ransomware utilizando MLP, redução de dimensionalidade e balanceamento de classes. Orientador: Claudomiro de Souza de Sales Júnior. 2023. 56 f. Dissertação (Mestrado em Engenharia Elétrica) - Instituto de Tecnologia, Universidade Federal do Pará, Belém, 2023. Disponível em:https://repositorio.ufpa.br/jspui/handle/2011/16641 . Acesso em:.