A machine learning framework for ECG biometric system
dc.contributor.advisor-co1 | ROSÁRIO, Denis Lima do | |
dc.contributor.advisor-co1Lattes | http://lattes.cnpq.br/8273198217435163 | pt_BR |
dc.contributor.advisor1 | CERQUEIRA, Eduardo Coelho | |
dc.contributor.advisor1Lattes | http://lattes.cnpq.br/1028151705135221 | pt_BR |
dc.contributor.advisor1ORCID | https://orcid.org/0000-0003-2162-6523 | pt_BR |
dc.creator | SANTOS, Alex Barros dos | |
dc.creator.Lattes | http://lattes.cnpq.br/9621826007236811 | pt_BR |
dc.date.accessioned | 2025-04-23T18:48:36Z | |
dc.date.available | 2025-04-23T18:48:36Z | |
dc.date.issued | 2020-02-28 | |
dc.description.abstract | The new environment of IoT and the deployment of 5G networks have been generating a huge amount of data. Developers are creating new applications and redesigning other ones completely. Also, a society greater concern with health increases the demand for health services provided with the usage of wearable devices that are getting cheaper. Moreover, the applications require more data protection and privacy. Thus, biometrics has become one of the primary mechanisms for protecting information used by users in all kind of systems and applications. This work investigates the use of an ECG signal in biometrics systems approaching machine learning techniques. This signal is a new alternative not only to increase current safety standards by providing the individual’s continuous authentication but also to assess health with cardiac monitoring already well established in medicine by evaluations. In this context, this master’s thesis proposes some processing steps to data sets, improving its quality that allows it to be used as a reliable source of biometric data. We define techniques for extracting signal considering mobile application constraints and design a structure that allows the use of ECG as a biometric signal in a scalable and heterogeneous environment considering different machine learning techniques such as Support Vector Machine, Random Forest and Neural Networks. The set of our proposed feature extraction, processing steps of data set and a machine learning model are the main contributions of this work. | pt_BR |
dc.description.affiliation | TRT - Tribunal Regional do Trabalho da 8ª Região (PA e AP) | pt_BR |
dc.identifier.citation | SANTOS, Alex Barros dos Santos. A machine learning framework for ECG biometric system. Orientador: Eduardo Coelho Cerqueira. 2020. 79 f. Dissertação (Mestrado em Engenharia Elétrica) - Instituto de Tecnologia, Universidade Federal do Pará, Belém, 2020. Disponível em: https://repositorio.ufpa.br/jspui/handle/2011/17275. Acesso em:. | pt_BR |
dc.identifier.uri | https://repositorio.ufpa.br/jspui/handle/2011/17275 | |
dc.language | por | pt_BR |
dc.publisher | Universidade Federal do Pará | pt_BR |
dc.publisher.country | Brasil | pt_BR |
dc.publisher.department | Instituto de Tecnologia | pt_BR |
dc.publisher.initials | UFPA | pt_BR |
dc.publisher.program | Programa de Pós-Graduação em Engenharia Elétrica | pt_BR |
dc.rights | Acesso Aberto | pt_BR |
dc.rights | Attribution-NonCommercial-NoDerivs 3.0 Brazil | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/br/ | * |
dc.source.uri | Disponível na internet via correio eletrônico: bibliotecaitec@ufpa.br | pt_BR |
dc.subject | Biometric | pt_BR |
dc.subject | Machine Learning | pt_BR |
dc.subject | Electrocardiogram | pt_BR |
dc.subject | Computer Networks | pt_BR |
dc.subject | Wearables | pt_BR |
dc.subject.areadeconcentracao | COMPUTAÇÃO APLICADA | pt_BR |
dc.subject.cnpq | CNPQ::ENGENHARIAS::ENGENHARIA ELETRICA | pt_BR |
dc.subject.linhadepesquisa | REDES E SISTEMAS DISTRIBUÍDOS | pt_BR |
dc.title | A machine learning framework for ECG biometric system | pt_BR |
dc.type | Dissertação | pt_BR |
Arquivo(s)
Pacote Original
1 - 1 de 1
Carregando...
- Nome:
- Dissertacao_ MachineLearningFramework.pdf
- Tamanho:
- 5.44 MB
- Formato:
- Adobe Portable Document Format
- Descrição:
Licença do Pacote
1 - 1 de 1
Nenhuma Miniatura disponível
- Nome:
- license.txt
- Tamanho:
- 1.85 KB
- Formato:
- Item-specific license agreed upon to submission
- Descrição: