Metodologia para a classificação automática de doenças em plantas utilizando redes neurais convolucionais.

Carregando...
Imagem de Miniatura

Data

2019-11-07

Título da Revista

ISSN da Revista

Título de Volume

item.page.theme

Editora(s)

Universidade Federal do Pará

Tipo de acesso

Acesso Abertoaccess-logo

Contido em

Citação

REZENDE, Vanessa Castro. Metodologia para a classificação automática de doenças em plantas utilizando redes neurais convolucionais. Orientador: Roberto Célio Limão de Oliveira; Coorientador: Adam Dreyton Ferreira dos Santos. 2019. 81 f. Dissertação (Mestrado em Engenharia Elétrica) - Instituto de Tecnologia, Universidade Federal do Pará, Belém, 2019. Disponível em: http://repositorio.ufpa.br:8080/jspui/handle/2011/12191 . Acesso em:.

DOI

As redes neurais convolucionais (CNNs) são uma das técnicas de aprendizado profundo que, devido ao avanço computacional dos últimos anos, alavancaram a área de visão computacional ao possibilitar ganhos substanciais nos mais variados problemas de classificação, principalmente aqueles que envolvem imagens digitais. Tendo em vista as vantagens na utilização dessas redes, diversas aplicações para a identificação automática de doenças de plantas foram desenvolvidas para assistência especializada ou ferramentas de triagem automática, contribuindo para práticas agrícolas mais sustentáveis e maior segurança na produção de alimentos. Nesse contexto, este trabalho tem como objetivo propor uma metodologia para a classificação de múltiplas patologias referentes a diversas espécies de plantas tendo como insumo uma base de dados composta de imagens digitais de doenças em plantas. Inicialmente, esta metodologia envolveu etapas de tratamento das imagens da base de dados de doenças em plantas para possibilitar que estivessem aptas a serem entradas dos modelos de CNNs selecionados (VGG16, RestNet101v1, ResNet101v2, ResNetXt50 e DenseNet169), assim como para geração de dez novas bases, variando entre 50 e 66 classes com maior representatividade, com o intuito de submeter os modelos a situações diversas. Após o treinamento dos modelos, um estudo comparativo foi conduzido com base em métricas de classificação amplamente utilizadas, como acurácia no teste, f1-score e área sob a curva. A fim de atestar a significância dos resultados obtidos, foi realizado o teste estatístico não-paramétrico de Friedman e dois procedimentos post-hoc, que demonstraram que ResNetXt50 e DenseNet169 obtiveram resultados superiores quando comparadas com VGG16 e ResNets.

Agência de Fomento

browse.metadata.ispartofseries

item.page.isbn

Fonte

1 CD-ROM

item.page.dc.location.country

Citação

REZENDE, Vanessa Castro. Metodologia para a classificação automática de doenças em plantas utilizando redes neurais convolucionais. Orientador: Roberto Célio Limão de Oliveira; Coorientador: Adam Dreyton Ferreira dos Santos. 2019. 81 f. Dissertação (Mestrado em Engenharia Elétrica) - Instituto de Tecnologia, Universidade Federal do Pará, Belém, 2019. Disponível em: http://repositorio.ufpa.br:8080/jspui/handle/2011/12191 . Acesso em:.