Métodos numéricos para problemas de evolução e aplicações

Carregando...
Imagem de Miniatura

Data

1988-04-26

Título da Revista

ISSN da Revista

Título de Volume

item.page.theme

Editora(s)

Universidade Estadual de Campinas

Tipo de acesso

Acesso Abertoaccess-logo

Contido em

Citação

VAZ, Cristina Lucia Dias. Métodos numéricos para problemas de evolução e aplicações. 1988. 95 f. Dissertação (Mestrado) - Universidade Estadual de Campinas, Instituto de Matemática, Estatística e Computação Científica, Campinas, 1988. Programa de Pós-Graduação em Matemática Aplicada,. Disponível em: <http://repositorio.ufpa.br/jspui/handle/2011/9819>. Acesso em:.

DOI

No Capítulo I, na primeira secção, apresentaremos alguns conceitos matemáticos necessários para atingirmos nossos objetivos. Na segunda secção, apresentaremos alguns esquemas simples de aproximação com relação ao tempo sem detalharmos a discretização no espaço. Para tais esquemas introduziremos os conceitos de Estabilidade e Convergência. Na terceira secção analisaremos os Método Splitting-Up, que foram iniciados por Douglas, Peaceman e Rachford e depois desenvolvidos pelos matemáticos soviéticos Yamenko, Samarskii, Marchuk e outros. Tais métodos são utilizados em problemas complicados que podem ser reduzidos a problemas consistindo duma cadeia de problemas simples. Esta redução é possível nos casos onde o operador original do problema pode ser decomposto na soma de operadores de estrutura mais simples. Centralizamos nossa atenção no caso em que o operador A pode ser representado apenas como a soma de dois outros operadores. Particularmente, discutiremos os esquemas Estabilização, Preditor-Corretor e Splitting-Up componente a componente analisando as questões sobre Estabilidade e Convergência. Na quarta secção, discutiremos alguns esquemas de aproximação para problemas do tipo hiperbólico enfatizando a dificuldade inerente na construção de esquemas Splitting-Up para este tipo de problema. No Capitulo II, descreveremos o problema do tipo hiperbólico de nosso interesse e tentaremos resolvê-lo do seguinte modo: i) Reduziremos o problema de 2ª ordem a um problema de 1ª ordem e aplicaremos os métodos Splitting-Up discutidos no Capitulo I para o tempo e diferenças finitas no espaço; ii) Usaremos o esquema Crank-Nicholson no tempo e Métodos Elementos Finitos no espaço. No Capítulo III discutiremos a implementação do procedimento discutido no Capitulo II. Finalmente, no Capitulo IV apresentaremos os resultados obtidos e nossas conclusões sobre os métodos estudados.

Agência de Fomento

CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

browse.metadata.ispartofseries

item.page.isbn

Fonte

item.page.dc.location.country

Citação

VAZ, Cristina Lucia Dias. Métodos numéricos para problemas de evolução e aplicações. 1988. 95 f. Dissertação (Mestrado) - Universidade Estadual de Campinas, Instituto de Matemática, Estatística e Computação Científica, Campinas, 1988. Programa de Pós-Graduação em Matemática Aplicada,. Disponível em: <http://repositorio.ufpa.br/jspui/handle/2011/9819>. Acesso em:.