Estimação de descarga de dispositivo IoT usando deep learning com otimização NSGA-II

Carregando...
Imagem de Miniatura

Data

2024-02-28

Título da Revista

ISSN da Revista

Título de Volume

item.page.theme

Editora(s)

Universidade Federal do Pará

Tipo de acesso

Acesso Aberto
Attribution-NonCommercial-NoDerivs 3.0 Brazilaccess-logo

Contido em

Citação

MACEDO, Wilson Antonio Cosmo. Estimação de descarga de dispositivo IoT usando deep Learning com Otimização NSGA-II. Orientador: Fabrício José Brito Barros .2024. 78 f. Dissertação (Mestrado em Engenharia Elétrica) - Instituto de Tecnologia, Universidade Federal do Pará, Belém, 2024. Disponível em: https://repositorio.ufpa.br/jspui/handle/2011/16760. Acesso em:.

DOI

O aumento das aplicações de redes IoT (Internet das Coisas) destaca a necessidade de otimizar a gestão de energia nestes sistemas, pois a eficiência energética é crucial para a adaptabilidade das implementações que referem-se à IoT. Este estudo analisa as curvas de descarga de uma bateria recarregável em um contexto de rede IoT que utiliza comunicação LoRa (Long Range) e vários sensores, com o objetivo de gerar múltiplas curvas de descarga para estimar o comportamento da bateria nesse cenário. Essas curvas foram utilizadas para treinar uma Rede Neural Artificial (RNA) de várias camadas, implementando técnicas de Deep Learning, na qual a arquitetura da RNA foi delineada usando o algoritmo de Otimização Multiobjetivo NSGA-II (Non-dominated Sorting Genetic Algorithm II), o que resultou em modelos com capacidade de estimar o tempo de descarga da bateria ao analisar um segmento do processo de descarga observado pelo modelo com erro médio quadrático de aproximadamente dois minutos para o modelo mais eficiente encontrado. Este resultado representa uma margem muito positiva, visto que a extensão dos testes de descarga são de até aproximadamente setenta e uma horas e a taxa de amostragem de coleta dos dados é de um minuto.

Agência de Fomento

browse.metadata.ispartofseries

item.page.isbn

Fonte

item.page.dc.location.country

Citação

MACEDO, Wilson Antonio Cosmo. Estimação de descarga de dispositivo IoT usando deep Learning com Otimização NSGA-II. Orientador: Fabrício José Brito Barros .2024. 78 f. Dissertação (Mestrado em Engenharia Elétrica) - Instituto de Tecnologia, Universidade Federal do Pará, Belém, 2024. Disponível em: https://repositorio.ufpa.br/jspui/handle/2011/16760. Acesso em:.