

Universidade Federal do Pará

João Carlos Lisboa de Lima

Modelo para Resistência de Cisalhamento em Vigas de Concreto sem Estribos

TESE DE DOUTORADO

Instituto de Tecnologia Programa de Pós-graduação em Engenharia Civil

Tese orientada pelo Professor Dr. Dênio Ramam Carvalho de Oliveira.

Belém – Pará – Brasil 2021 Universidade Federal do Pará Instituto de Tecnologia Programa de Pós-graduação em Engenharia Civil

João Carlos Lisboa de Lima

Modelo para Resistência de Cisalhamento em Vigas de Concreto sem Estribos

Tese de Doutorado

Tese submetida ao Programa de Pós-Graduação em Engenharia Civil da Universidade Federal do Pará, como parte dos requisitos para obtenção do Título de Doutor.

Orientador: Dr. Dênio Ramam Carvalho de Oliveira

Belém Novembro de 2021

Dados Internacionais de Catalogação na Publicação (CIP) de acordo com ISBD Sistema de Bibliotecas da Universidade Federal do Pará Gerada automaticamente pelo módulo Ficat, mediante os dados fornecidos pelo(a) autor(a)

 L769m Lisboa de Lima, João Carlos. Modelo para Resistência de Cisalhamento em Vigas de Concreto sem Estribos / João Carlos Lisboa de Lima. — 2021. 113 f. : il. color.

> Orientador(a): Prof. Dr. Dênio Ramam Carvalho de Oliveira Tese (Doutorado) - Universidade Federal do Pará, Instituto de Tecnologia, Programa de Pós-Graduação em Engenharia Civil, Belém, 2021.

1. Cisalhamento. 2. Vigas sem Estribo. 3. Algoritmo Iterativo. 4. Modelo Teórico. 5. Banco de Dados. I. Título.

CDD 624.1834

MODELO PARA RESISTÊNCIA DE CISALHAMENTO EM VIGAS DE CONCRETO SEM ESTRIBO

AUTOR:

JOÃO CARLOS LISBOA DE LIMA

TESE SUBMETIDA À BANCA EXAMINADORA APROVADA PELO COLEGIADO DO PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA CIVIL DO INSTITUTO DE TECNOLOGIA DA

APROVADO EM: 30 / 11 / 2021.

BANCA EXAMINADORA:

Prof. Dr. Dênio Ramam Carvalho de Oliveira Orientador (UFPA)

ore.

Prof. Dr. José Neres da Silva Filho Membro Externo (UFRN)

Prof. Dr. Alcebíades Negrão Macêdo Membro Interno (UFPA)

Visto:

/ Prof. Dr. Marcelo de Souza Picanço Coordenador do PPGEC / ITEC / UFPA

Universidade Federal do Pará Instituto de Tecnologia Programa de Pós-graduação em Engenharia Civil

João Carlos Lisboa de Lima

Modelo para Resistência de Cisalhamento em Vigas de Concreto sem Estribos

Tese submetida ao Programa de Pós-Graduação em Engenharia Civil da Universidade Federal do Pará, como parte dos requisitos para obtenção do Título de Doutor.

> Prof. Dr. Dênio Ramam Carvalho de Oliveira Orientador Faculdade de Engenharia Civil – UFPA

> > Prof. Dr. Alcebíades Negrão Macêdo Examinador Interno Faculdade de Engenharia Civil – UFPA

Prof. Dr. José Neres da Silva Filho Examinador Externo Universidade Federal do Rio Grande do Norte

Belém, 30 de novembro de 2021.

Minha mãe, eterna tutora, Lucidéa Lisboa Gomes (In memoriam)

Resumo

LIMA, J. C. L. (2021). **Modelo para Resistência de Cisalhamento em Vigas de Concreto Sem Estribos**. Tese de Doutorado, Instituto de Tecnologia, Universidade Federal do Pará, Belém, Pará, Brasil. 2021.

A análise dos esforços de cisalhamentos em vigas de concreto envolve complexidades significativas e iteração entre parâmetros. O desenvolvimento de modelos para o dimensionamento e verificação do estado limite último das vigas iniciam-se no século XIX com modelos empíricos, teóricos e numéricos como a analogia da treliça de Ritter-Mörsch e a teoria do campo de compressão modificado. Porém as relações quase estocásticas da resistência à compressão do concreto, taxa de armadura longitudinal, esbeltez de carregamento, dimensões transversais e diâmetro do agregado graúdo somam inúmeras dificuldades em criar fórmulas simples e de fácil aplicabilidade. Deste modo, o presente trabalho tem por objetivo desenvolver um modelo baseado em relações de proporcionalidade e a aplicação de um algoritmo iterativo para otimizar os valores de um banco de dados inicial de 220 vigas (63 autores) que romperam ao cisalhamento e definir um modelo teórico que será comparado com um banco de dados de 510 vigas (68 autores) e outros métodos de cálculo de relevância. A fórmula proposta proporcionou um coeficiente de variação de 6,23%, sendo entre 34,97% e 59,52% menor que os modelos analisados. Desta forma, os resultados do método proposto, ao considerar-se a relação experimental e teórico do banco de dados, apresenta todos os valores dentro do intervalo da segurança apropriada, permitindo maior acurácia em definir a carga última de vigas de concreto sem estribos.

Palavras-chaves

Cisalhamento, Vigas sem Estribos, Algoritmo Iterativo, Modelo Teórico, Banco de Dados.

Abstract

LIMA, J. C. L. (2021). Model for Shear Strength in Concrete Beams Without Stirrups.
Doctoral Thesis, Institute of Technology, Federal University of Pará, Belém, Pará, Brazil,
2021 (in Portuguese).

The analysis of shear strength in concrete beams involves significant complexities and iteration between parameters. The development of models for the design and verification of the ultimate limit state of beams began in the 19th century with empirical, theoretical and numerical models such as the Ritter-Mörsch truss analogy and the modified compression field theory. However, the almost stochastic ratios of compressive strength of concrete, longitudinal reinforcement ratio, loading slenderness, transverse dimensions and coarse aggregate diameter add up to numerous difficulties in creating simple and easily applicable formulas. Thus, the present work aims to develop a model based on proportionality relations and the application of an iterative algorithm to optimize the values of an initial database of 220 beams (62 authors) that failure by shear and define a theoretical model that will be compared with a database of 510 beams (63 authors) and other methods of calculation of relevance. The proposed formula provided a coefficient of variation of 6.23%, being between 34.97% and 59.52% lower than the models analyzed. Thus, the results of the proposed method, when considering the experimental and theoretical relationship of the database, present all values within the appropriate safety range, allowing greater accuracy in defining the ultimate load of concrete beams without stirrups.

Keywords

Shear, Beams without Stirrups, iterative algorithm, Theoretical Model, Database.

Sumário

Car	oítulo Página
1	INTRODUÇÃO1
2 .	IUSTIFICATIVA
3	OBJETIVO4
3.1	OBJETIVOS ESPECÍFICOS 4
4	REVISÃO BIBLIOGRÁFICA 5
4.1	TRANSFERÊNCIAS DE ESFORÇOS CORTANTES 5
4.1.	1 TRELIÇA CLÁSSICA DE RITTER-MÖRSCH 6
4.1.	2 TRANSFERÊNCIA DE ESFORÇOS CORTANTES PÓS-FISSURAÇÃO7
4.2	PUBLICAÇÕES SOBRE CISALHAMENTO EM VIGAS9
4.2.	1 CLADERA & MARÍ (2005) 9
4.2.2	2 ISMAIL <i>et al.</i> (2017)
4.2.	3 PANDA & GANGOLU (2017)
4.2.4	4 LIMA <i>ET AL</i> . (2021)
5	ESTIMATIVAS DAS TENSÕES DE CISALHAMENTO 29
5.1	ACI 318 (2019)
5.2	AASHTO-LRFD (2017)
5.3	EUROCODE 2 (2002)
5.4	RUSSO ET AL. (2005)
5.5	BAZANT & SUN (1987)
6	MODELO PROPOSTO 33
6.1	BANCO DE DADOS
6.2	CORRELAÇÃO ENTRE PARÂMETROS

7 ANÁLISE COMPARATIVA DOS RESULTADOS	
7.1 ANÁLISE DE DISPERSÃO	45
7.1.1 RESISTÊNCIA À COMPRESSÃO (f'_c)	
7.1.2 Relação a/d	
7.1.3 TAXA DE ARMADURA LONGITUDINAL (ρ_l)	
7.2 ANÁLISE FATORIAL DOS DADOS	
8 CONCLUSÃO	53
REFERÊNCIAS BIBLIOGRÁFICAS	
APÊNDICE A: BANCO DE DADOS	62
APÊNCICE B: BANCO DE DADOS	69
APÊNDICE C: ARTIGO (LIMA ET AL.,2021)	
ANEXO A: ACEITE (LIMA ET AL., 2021)	

Lista de Figuras

Figura 1.1 - Modelos de cálculo publicados na ACI structural jornal (COLLINS et
al.,1996)1
Figura 1.2 - Fórmulas utilizadas na norma ACI (COLLINS et al., 1996) 2
Figura 1.3 - Número de ensaios reportados em periódicos
Figura 4.1 – Viga biapoada (a) tensões nos planos x-y (b) e plano principal (c)5
Figura 4.2 – Planos de tensões principais em vigas não fissuradas5
Figura 4.3 – Analogia da treliça clássica de Ritter-Mörsch
Figura 4.4 - Transferência de esforços pós-fissuração
Figura 4.5 – Sistema de ensaio, CLADERA & MARÍ (2005)9
Figura 4.6 – Detalhamento das peças, CLADERA & MARÍ (2005)10
Figura 4.7 - Primeira fase do programa experimental (Ismail et al., 2017) 11
Figura 4.8 - Segunda fase do programa experimental (Ismail et al., 2017) 12
Figura 4.9 – Influência de a/d na carga de ruptura (Ismail <i>et al.</i> ,2017)
Figura 4.10 - Relação das predições normativas com a carga de ruptura (efeito de a/d)
(Ismail <i>et al.</i> ,2017)14
Figura 4.11 – Influência de f'_c na carga de ruptura (Ismail <i>et al.</i> ,2017)14
Figura 4.12 - Relação das predições normativas com a carga de ruptura (efeito de f'_c)
(Ismail <i>et al.</i> ,2017)15
Figura 4.13 – Influência de ρ_v na carga de ruptura (Ismail <i>et al.</i> ,2017)
Figura 4.14 - Relação das predições normativas com a carga de ruptura (efeito de ρ_v)
(Ismail <i>et al.</i> ,2017)16
Figura 4.15 – Influência de <i>d</i> na carga de ruptura (Ismail <i>et al.</i> ,2017)16
Figura 4.16 - Relação das predições normativas com a carga de ruptura (efeito de d)
(Ismail <i>et al.</i> ,2017)17
Figura 4.17 – Seção transversal das vigas(mm[in]) (PANDA & GANGOLU, 2017) 19
Figura 4.18 – Influência de ρ : (a) C_b , f_{cu} , φ constantes; (b) C_b e φ constantes; (c) f_{cu} e
φ constantes (PANDA & GANGOLU, 2017)
Figura 4.19 – Influência de φ : (a) C_b e f_{cu} constantes; (b) C_b e ρ constantes; f_{cu} e ρ
constantes (PANDA & GANGOLU, 2017)

Figura 4.20 – Influência de f_{cu} : (a) $C_b \in \varphi$ constantes; (b) $C_b \in \rho$ constantes; (c) φ e	ρ
constantes (PANDA & GANGOLU, 2017).	22
Figura 4.21 – Influência de C_b : (a) $f_{cu} \in \varphi$ constantes; (b) $f_{cu} \in \rho$ constantes; (c) φ e	ρ
constantes (PANDA & GANGOLU, 2017).	23
Figura 4.22 – Análise paramétrica do banco de dados.	24
Figura 4.23 – Análise paramétrica do banco de dados.	25
Figura 4.24 - Influencia de C_{sw} e resultados do banco de dados	26
Figura 4.25 – Detalhamento genérico do sistema de ensaio	27
Figura 4.26 – Tendência dos resultados teóricos	28
Figura 5.1 - Modelo iterativo de acordo com BENTZ et al. (2006)	31
Figura 6.1 - Análise paramétrica do banco de dados	37
Figura 6.2 - Influência de D_{\max} e d no comportamento de ξ	38
Figura 6.3 - Influência da relação b_w/d e τ_{Lit}	39
Figura 6.4 – Influência da relação γ e τ_{Lit}	40
Figura 6.5 - Organograma para o cálculo das variáveis.	42
Figura 7.1 - Proporção das vigas favoráveis a segurança	44
Figura 7.2 - Análise da relação τ_{Lit} / τ_{theo}	44
Figura 7.3 – Gráfico <i>box-plot</i> .	46
Figura 7.4 – Tendência dos resultados teóricos com <i>box-plot</i> (<i>f</i> ' _c)	47
Figura 7.5 – Tendência dos resultados teóricos com <i>box-plot</i> (a/d)	48
Figura 7.6 – Tendência dos resultados teóricos com <i>box-plot</i> (ρ_l)	49
Figura 7.7 – Comportamento dos valores teóricos com α	51
Figura 7.8 - Correlação entre banco de dados e análise fatorial	52
Figura 7.9 - Valores teóricos distintos e vigas analisadas	52

Lista de Tabelas

Tabela 4.1 – propriedades das vigas ensaiadas (adaptado de Ismail et al., 2017)12
Tabela 4.2 – Fatores utilizados no programa experimental
Tabela 4.3 – Características das vigas e carga de ruptura
Tabela 4.4 – Relação de τ_{exp} / τ_{theo}
Tabela 4.5 – Relação de τ_{exp} / τ_{theo}
Tabela 6.1 - Banco de dados resumido
Tabela 6.2 - Matriz de correlação (Spearman). 40
Tabela 6.3 - Valores de significância de p 41
Tabela 6.4 - Matriz de correlação (Spearman) para o efeito de a/d
Tabela 7.1 - Critério de COLLINS (2001) (adaptado de MORAES NETO et al., (2014)).43
Tabela 7.2 – Resultado da avaliação do Critério de demérito
Tabela 7.3 – Grupos para análise fatorial
Tabela A.1 - Banco de dados para composição do modelo teórico. 62
Tabela B.1 - Banco de dados para validação do modelo teórico

2 INTRODUÇÃO

O desenvolvimento de novos materiais e a aplicação de novos métodos de cálculo para racionalizar o dimensionamento e verificação estrutural do estado limite último, avança juntamente com o objetivo de caracterizar o comportamento de esforços internos solicitantes. Portanto, a criação de modelos teóricos, empíricos ou numéricos que possam extrair com segurança e acurácia a capacidade mecânica de elementos estruturais, possibilita prazos e custos menores na execução de projetos e reforços estruturais.

Averiguando o cisalhamento em sólidos homogêneos no estado linear-elástico do material, verifica-se uma distribuição de tensões e deformações de fácil aplicabilidade. Porém, a compreensão macro de materiais compósitos como o concreto armado, torna o comportamento e a não linearidade mecânica do material um modelo de significativa complexidade matemática para aferir teoricamente a carga de ruptura.

Segundo CAVAGNIS *et al.* (2020), o cisalhamento unidirecional em vigas de concreto é reconhecido a mais de um século como um dos mais complexos e fundamentais tópicos a serem abordados na engenharia estrutural. Destacando-se pela influência de, aproximadamente, 20 fatores que, de acordo com LEONHARDT & MÖNNIG (1994), regem a resistência de cisalhamento, oriundas da heterogeneidade do concreto.

De acordo com COLLINS *et al.* (1996) há uma crescente demanda de pesquisas, marcos na criação de normas e criação de fórmulas para descrever o comportamento do cisalhamento em vigas desde o século XIX, como apresentado na Figura 1.1 e Figura 1.2.

Figura 2.1 - Modelos de cálculo publicados na ACI structural jornal (COLLINS et al., 1996).

Figura 2.2 - Fórmulas utilizadas na norma ACI (COLLINS et al., 1996).

COLLINS *et al.* (2008) enfatiza o número de pesquisas experimentais publicadas nos principais periódicos ao longo de 60 anos assim como o modo de carregamento de vigas representados, em maioria, por ensaios de 4 pontos de carregamento, como visto na Figura 1.2.

Figura 2.3 - Número de ensaios reportados em periódicos.

Neste trabalho, será discutido o desempenho e acurácia da fórmula proposta em relação aos modelos empíricos de BAŽANT & SUN (1987) e RUSSO *et al.* (2005), códigos normativos como ACI 318 (2019) e EUROCODE 2 (2004), além da norma AASHTO-LFRD (2017) baseada no modelo numérico e teórico de BENTZ *et al.* (2006).

3 JUSTIFICATIVA

A observação individual dos fenômenos que influenciam a resistência de cisalhamento são fundamentais para a compreensão global do comportamento à ruptura de vigas de concreto sem estribos. Partindo do contexto histórico de avaliação desses comportamentos, parâmetros como efeito de tamanho e efeito pino foram inseridas apenas na ACI 318 (2019), porém algumas normas como EUROCODE 2 (2004) e NBR 6118 (2014) ainda negligenciam outros fatores como efeito arco, engrenamento de agregados e *size effect*.

As diversas variáveis como resistência à compressão do concreto, taxa de armadura longitudinal, diâmetro máximo do agregado graúdo, relação de esbeltez do carregamento e dimensões transversais, apresentam graus de preponderância diferentes como apresentado por CAVAGNIS *et al.* (2020), portanto, apresentar uma abordagem que possa mensurar e quantificar essas ponderações é uma vertente inédita para avaliar a resistência de cisalhamento de vigas sem estribos.

4 OBJETIVO

O presente trabalho baseia-se a partir do modelo semi-empírico do artigo aceito para publicação (Anexo A) de LIMA *et al.* (2021) indexado em revista de qualis A1 (Apêndice C).

Esta pesquisa almeja continuar a análise de proporcionalidade entre parâmetros que induzem o cisalhamento em vigas, porém, sem estribos. Será agregado a essa relação entre as variáveis, uma regressão não-linear exponencial de múltiplas variáveis com objetivo de otimizar valores em um banco de dados com vigas que romperam ao cisalhamento.

4.1 Objetivos específicos

- Definir os parâmetros mais preponderantes de cisalhamento segunda a literatura científica;
- determinar a relação de proporcionalidade entre os parâmetros e a tensão de ruptura experimental;
- Apresentar uma fórmula de fácil aplicação e baixa complexidade;
- Comparar o desempenho e acurácia da fórmula proposta em relação a outros modelos e códigos normativos;
- Quantificar o grau de dispersão das relações experimental e teórica dos modelos comparados e o modelo proposto em diferentes intervalos dos parâmetros analisados.

5 REVISÃO BIBLIOGRÁFICA

5.1 TRANSFERÊNCIAS DE ESFORÇOS CORTANTES

Com base em uma viga prismática homogênea, biapoiada, com material linear-elástico e carregamento perpendicular ao eixo longitudinal, ocorre a transferência de tensões normais tangentes ao eixo transversal, de acordo com a Figura 4.1 e 4.2, é notável que esses esforços de tração e compressão que surgem paralelamente entre si, definem o aumento progressivo nos esforços de cisalhamento, anulando-se nos nas bordas superiores e inferiores, atingindo o máximo na linha neutra e tendendo ao deslizamento entre interfaces em peças não monolíticas. Essas tensões normais de flexão (σ) e cisalhamento (τ), proporcionam um estado biaxial, originando planos inclinados de acordo com a mecânica dos sólidos.

Figura 5.1 – Viga biapoada (a) tensões nos planos x-y (b) e plano principal (c).

Figura 5.2 – Planos de tensões principais em vigas não fissuradas.

As vigas de concreto apresentam, com o acréscimo progressivo de cargas, três modos distintos de distribuição de tensões e deformações ao longo da seção longitudinal. A princípio, ocorrer o estádio I, onde o dimensionamento de vigas, para o estado de serviço, deve permanecer, onde as tensões solicitantes não afetaram o limite de tensões de tração do concreto, ou seja, a ausência de fissuras. O estádio II é considerado o estado limite de serviço, onde as tensões solicitantes ainda se delimitam na fase elástica do aço ou concreto, ocasionando as primeiras fissuras e pequenas deformações. Quando a viga apresenta deflexões excessivas, acima de 0,4% do vão, deformações que ultrapassam o regime elástico do aço e concreto, considera-se como estádio III, encontrando-se no estado limite último com posterior colapso após acréscimo de cargas.

5.1.1 Treliça clássica de RITTER-MÖRSCH

A partir de uma analogia de transferência de esforços internos solicitantes na viga, RITTER (1899) e MÖRSCH (1902) desenvolveram um modelo de dimensionamento e verificação de cisalhamento. Através da Figura 4.3, a relação das cargas é resumida em diagonais comprimidas (bielas), diagonais tracionadas (tirantes), banzos inferiores e superiores responsáveis pelos esforços de tração e compressão oriundos da flexão na viga.

Figura 5.3 – Analogia da treliça clássica de Ritter-Mörsch.

Onde:

- R_{dc} : Resistência da diagonal comprimida;
- R_{dt} : Resistência da diagonal tracionada;
- R_{bc} : Resistência do banzo comprimido (concreto comprimido);
- R_{bt} : Resistência do banzo tracionado (armadura longitudinal);
- θ : Ângulo de inclinação da biela;
- α : Ângulo de inclinação do tirante.

Principais características do modelo clássico:

- Considera-se uma treliça isostática;
- Esforços internos paralelos as diagonais e banzos;
- Bielas são inclinadas em relação aos banzos em 45° e tirantes com ângulo variável;
- Os tirantes são representados pela somatória das parcelas contribuintes resistentes à tração do concreto e reforço transversal como estribos.

5.1.2 Transferência de esforços cortantes pós-fissuração

Após uma análise linear dos esforços cortantes com a treliça de Ritter-Mörsch, o comportamento de resistência pós-fissuração torna-se a maior problemática no ponto de vista da resistência última pela falta de linearidade na redistribuição de tensões ao longo da seção longitudinal das vigas de concreto. Deste modo, a Figura 4.2 mostra alguns fenômenos que iniciam com a fissuração.

Figura 5.4 - Transferência de esforços pós-fissuração.

• Engrenamento de agregados (V_a) :

Através do deslizamento entre interfaces nas fissuras de cisalhamento, pode ocorrer o intertravamento entre elas pelos agregados graúdos, o engrenamento entre esses agregados está, de modo unitário, relacionado com o aumento de resistência da viga (SWAMY & ANDRIOPOULOS, 1974; POLI *et al.*,1987), porém, nota-se que o plano de fissuração como visto na Figura 4.2 pode ter dois modos de plano de fissuração (LACHEMI *et al.*, 2005; HASSAN *et al.*, 2010).

O padrão de fissuração A, onde a fissura percola os agregados graúdos, ocorre quando o concreto apresenta, segundo BENTZ *et al.* (2006), valores abaixo de 70 MPa, pois a rigidez da matriz cimentícia é menor que a do agregado, ocasionando a quebra da superfície de contato com o agregado.

O padrão de fissuração B incide de concretos com alta resistência ou com agregados lamelares onde, no primeiro caso, a rigidez da argamassa do concreto consegue aderir com maior eficácia. Em agregados lamelares, o modo de ruptura do agregado ocorre com maior facilidade por flexão, independente da resistência à compressão do concreto.

Efeito de pino (V_d) :

Este fenômeno ocorre com a diferença de rigidez entre a armadura longitudinal e o concreto, a resistência da armadura tracionada a esforços perpendiculares ao eixo da viga pode ocasionar, segundo GERGELY (1969), HOUDE (1973) e SONNENBERG & AL-MAHAIDI (2007), um acréscimo entre 18% e 26% da resistência de cisalhamento. Segundo

CAVAGNIS *et al.* (2018) é possível mensurar esse feito a partir de um modelo empírico e está diretamente relacionado a resistência à tração do concreto, taxa de armadura longitudinal, diâmetro das barras e espaçamento entre elas.

• Efeito arco (V_{arc}) :

O efeito arco ocorre em maior representatividade quando a razão entre o vão de cisalhamento e altura útil (a/d) for menor que 2,5, pois a biela tende a criar um arco com o banzo superior (zona comprimida), tornando maior a resistência última, esse tipo de fenômeno é tipicamente usual em vigas paredes, consolos de concreto e blocos de fundação.

5.2 Publicações sobre cisalhamento em vigas

5.2.1 CLADERA & MARÍ (2005)

O objetivo do trabalho foi investigar a influência e eficiência do concreto de alta resistência à compressão (f'_c) em vigas com e sem estribos. Houve a divisão de 04 classes de concreto, H50 $(f'_c = 49,9 \text{ MPa})$, H60 $(f'_c = 60,8 \text{ MPa})$, H75 $(f'_c = 68,9 \text{ MPa})$ e H100 $(f'_c = 87 \text{ MPa})$ e comparou-se os resultados experimentais com a AASHTO LRFD (2000), EUROCODE 2 (2004), ACI 318 (2002) e modelos empíricos propostos pelos autores.

As vigas foram submetidas a um ensaio de 3 pontos e levadas à ruptura. Abaixo são apresentados os detalhamentos do programa experimental nas Figura 4.5 e 4.6.

Figura 5.5 – Sistema de ensaio, CLADERA & MARÍ (2005).

Figura 5.6 – Detalhamento das peças, CLADERA & MARÍ (2005).

Após os ensaios, CLADERA & MARÍ (2005) observaram que:

- As vigas de concretos ensaiadas sem armaduras transversais, aumentam de modo progressivo a fragilidade em relação a resistência à compressão;
- A resistência de cisalhamento é acrescida à medida que f'_c aumenta;
- A ductilidade é significativamente acrescida com o reforço transversal;
- Há maior eficiência da armadura transversal com maiores resistências à compressão do concreto;
- Os modelos empíricos propostos pelos autores tiveram uma assertividade próxima a AASHTO LRFD (2002), baseada na teoria do campo de compressão modificado.

5.2.2 ISMAIL et al. (2017)

O artigo apresenta uma investigação experimental de 24 vigas curtas, com e sem reforços vertical, que predominantemente, apresentam maior ação do efeito arco. Alguns parâmetros como a relação a/d, taxa de armadura transversal e a resistência à compressão do concreto (f'_c) , foram estudados com o objetivo de verificar as influências no comportamento mecânico e comparar o desempenho das normas na previsão da capacidade última de cisalhamento.

O programa experimental consistiu em duas fases, o primeiro, visto na Figura 4.7, apresenta vigas com as mesmas taxas de armadura longitudinal e dimensões transversais. Foi alterado a razão do vão de cisalhamento e altura útil (1,67, 1,29, 0,91), resistência à compressão do concreto (entre 30 MPa e 85 MPa), taxa de armadura de pele (ρ_s) (0% e 0,215%) e reforço de transversal (ρ_v) (entre 0% e 1,44%).

Figura 5.7 - Primeira fase do programa experimental (Ismail et al., 2017).

A segunda fase, seguiu a vertente de analisar o *size effect* de vigas curtas, sem armadura de cisalhamento com a variação da altura útil, utilizou-se a resistência à compressão do concreto em uma faixa de 30 MPa e relação a/d constante, como mostra o detalhamento na Figura 4.8.

Figura 5.8 - Segunda fase do programa experimental (Ismail et al., 2017).

Na Tabela 4.1 são apresentadas as características das vigas ensaiadas assim como as cargas de ruptura.

Viga	Fase	a / d	f' _c (MPa)	ρ _ν (%)	ρ _s (%)	Carga de ruptura (kN)
A1		1,67	85,2	0	0	353
A2	_	1,67	85,7	0,56	0,215	422
A3	_	1,67	85,1	1,26	0,215	466
B1	_	1,29	86,9	0	0	491
B2	Ι	1,29	86,6	0,59	0,215	564
B3 C1	_	1,29	88,1	1,34	0,215	567
	_	0,91	85,7	0	0	741
C2	-	0,91	85,8	0,67	0,215	>920*
C3	_	0,91	86,0	1,44	0,215	>920*

Tabela 5.1 – propriedades das vigas ensaiadas (adaptado de Ismail et al., 2017).

Viga	Fase	a / d	f'_c (MPa)	$ ho_{v}$ (%)	$ ho_{s}$ (%)	Carga de ruptura (kN)
D1		1,67	58,8	0	0	296
D2	-	1,67	59,7	0,56	0,215	373
D3	-	1,67	58,1	1,26	0,215	369
E1	-	1,29	58,2	0	0	415
E2	-	1,29	59,1	0,59	0,215	513
E3	T	1,29	59,2	1,34	0,215	506
F1	1	0,91	60,5	0	0	545
F2		0,91	60,6	0,67	0,215	706
F3	-	0,91	59,5	1,44	0,215	748
G1	-	1,67	30,9	0,56	0,215	292
G2	-	1,29	30,5	0,59	0,215	372
G3	-	0,91	31,3	0,67	0,215	489
H1		1,67	35,8	0	0	375
H2	II	1,65	35,8	0	0	316
H3	-	1,64	35,8	0	0	254

Tabela 4.1 – propriedades das vigas ensaiadas (adaptado de Ismail et al., 2017) (Cont.).

*A capacidade da máquina de teste foi alcançada antes da ruptura.

A partir da verificação da relação a/d, comprovou-se que o aumento do vão de cisalhamento ocasiona uma diminuição das tensões solicitantes na biela, reduzindo desse modo a resistência da viga, como visto na Figura 4.9.

Figura 5.9 – Influência de a/d na carga de ruptura (Ismail *et al.*,2017).

Foi observado que a ACI 318 (2014) está abaixo da segurança apropriada. A AASHTO LRFD (2012) apresenta uma significativa tendência a ser conservadora com o decréscimo de a/d. A MODEL CODE (2010) e EUROCODE 2 (2004) são conservadoras com o aumento do f'_c e ρ_v de acordo com a Figura 4.10.

Figura 5.10 - Relação das predições normativas com a carga de ruptura (efeito de a/d) (Ismail *et al.*,2017).

Avaliando o aumento de f'_c , houve o aumento da resistência de acordo com a redução da relação a/d, de acordo com a Figura 4.11, o autor aponta que a influência do efeito arco está diretamente relacionado com o aumento da rigidez da biela.

Figura 5.11 – Influência de f'_c na carga de ruptura (Ismail *et al.*,2017).

Nota-se que a acurácia das normas tem tendência decrescente na razão entre valores experimentais e teóricos, onde a ACI 318 (2014) é mais assertiva nos resultados com f'_c no intervalo de 30 MPa, e tornando-se perigosa com valores acima, com provável imprecisão por limitar o modelo teórico para f'_c menor que 69 MPa, de acordo com a Figura 4.12.

Figura 5.12 - Relação das predições normativas com a carga de ruptura (efeito de f'_c) (Ismail *et al.*,2017).

A adição de 0,6% de taxa de armadura transversal, reforçou em aproximadamente 20% na capacidade de cisalhamento, isso pode ser atribuído ao fato que o reforço confina as interfaces quando tendem a deslizar, como apresentado na Figura 4.13.

Figura 5.13 – Influência de ρ_v na carga de ruptura (Ismail *et al.*,2017).

A Figura 4.14 mostra que a ACI 318 (2014) permanece aproximadamente constante quando se varia a taxa de armadura transversal. Pode-se deduzir que o reforço vertical é aferido corretamente e os valores teóricos divergem da segurança apropriada pela influência do efeito arco, enquanto os outros códigos normativos são afetados por serem notavelmente conservadores.

Figura 5.14 - Relação das predições normativas com a carga de ruptura (efeito de ρ_v) (Ismail *et al.*,2017).

Com o objetivo de avaliar o desempenho dos modelos de biela e tirantes (STM) das normas em relação ao efeito de tamanho, os autores verificaram que, segundo a Figura 4.15, o fenômeno observado por BAŽANT & KIM (1984) diminui a resistência com o aumento da altura útil.

Figura 5.15 – Influência de *d* na carga de ruptura (Ismail *et al.*,2017).

Na Figura 4.16, a ACI 318 (2014), EUROCODE 2 (2004) e MODEL CODE (2010) obtiveram uma crescente imprecisão em estimar as cargas de ruptura, ainda mais acentuada na AASHTO LRFD (2012) em desconsiderar o efeito de tamanho.

Figura 5.16 - Relação das predições normativas com a carga de ruptura (efeito de d) (Ismail *et al.*,2017).

Após os resultados e análises descritas anteriormente, os autores definiram que:

- O efeito arco é o parâmetro de maior relevância quando a/d < 2,5;
- A influência da resistência à compressão do concreto, tem maior preponderância em vigas curtas, o reforço vertical é essencial para o confinamento, contenção das fissuras e aumento da resistência;
- O efeito de tamanho tem pouca relevância na fissuração de cisalhamento.

5.2.3 PANDA & GANGOLU (2017)

Os autores tiveram o objetivo de isolar o fenômeno do efeito de pino e os 4 principais parâmetros que influenciam esse fenômeno na resistência de cisalhamento. Variou-se a taxa de armadura longitudinal (ρ), cobrimento de concreto (C_b), Resistência à compressão do concreto (f_{cu}) e diâmetro da barra longitudinal (φ) e a/d constante de 2,73.

Realizou-se um programa experimental com o intuito de verificar a iteração entre as variáveis. Foram moldadas 19 vigas divididas em 3 grupos principais que relacionam a taxa de armadura com baixa, média e alta taxa. sendo a baixa e alta com duas resistências à compressão, duas espessuras de cobrimento e dois diferentes diâmetros de armadura. O grupo mediamente armado, utilizou intervalos de φ e C_b como previsto na Tabela 4.2 e no detalhamento da Figura 4.17.

	(adaptado de PA	ANDA & GANGOI	LU, 2017).	
ρ (%)	arphi (mm)	f_{cu} (MPa)	C_b (mm)	Viga
	10	49,45	25	A1
			75	B1
		68,76	25	A2
			75	B2
1,164	20	10.15	25	C1
		49,45	75	C2
		(0.7(25	D1
		68,76	75	D2
	10 —	49,45 —	25	G1
			75	H1
		68,76	25	G2
2 2 2 7			75	H2
2,327	20 —	40.45	25	E1
		49,43	75	F1
		69 76	25	E2
		68,/6	75	F2
	10	62,39		I1
1,490			50	I2
				I3

Tabela 5.2 – Fatores utilizados no programa experimental

Figura 5.17 - Seção transversal das vigas(mm[in]) (PANDA & GANGOLU, 2017).

Após os ensaios, normalização e aferição dos resultados, foi utilizado a metodologia estatística *design of experimental* para de avaliar o grau de significância, correlação entre parâmetros, influência e preponderância no efeito de pino.

• Influência de ρ

Segundo a Figura 4.18 (a), ao manter constante C_b , f_{cu} , φ , detectou-se a queda da resistência advindo do aumento da profundidade da linha neutra.

Variando ρ e f_{cu} , houve o decréscimo constante da resistência, Figura 4.18 (b). Isso pode ser atribuído pelo aumento do reforço longitudinal, altura da zona de compressão do concreto à flexão, a profundidade do eixo neutro e inibindo a ação de pino.

Alterando os valores de $\rho \in C_b$ percebe-se ganho de resistência com o incremento do cobrimento, definido pelos autores como *cover effect*, visto na Figura 4.18 (c).

Figura 5.18 – Influência de ρ : (a) C_b , f_{cu} , φ constantes; (b) C_b e φ constantes; (c) f_{cu} e φ constantes (PANDA & GANGOLU, 2017).

• Influência de φ

A Figura 4.19 (a) não mostra a relevância de φ no efeito de pino para valores de ρ , desde que outros fatores permaneçam constantes, indicando que a resistência reduz com níveis mais altos de ρ .

A partir da Figura 4.19 (b), há uma tendência de queda no efeito de φ na resistência para os intervalos maiores de f_{cu} , com outros fatores sendo constantes, menor a influência da zona comprimida.

A Figura 4.19 (c) demonstra que não há efeito de φ em diferentes níveis de C_b .

Figura 5.19 – Influência de φ : (a) C_b e f_{cu} constantes; (b) C_b e ρ constantes; f_{cu} e ρ constantes; f_{cu} e ρ constantes (PANDA & GANGOLU, 2017).

• Influência de f_{cu}

A Figura 4.20 (a) mostra uma tendência decrescente do efeito de f_{cu} em relação a ρ . Atrubui-se o fenômeno pela menor transferência de esforços para a zona comprimida à flexão do concreto, que aumenta simutaneamente com o reforço longitudinal. Assim, podese inferir que o efeito pino é associado à ductilidade da seção.

Quando se varia φ , há uma queda da resistência, indiferentemente do diâmetro, definido principalmente pela variação da resistência à compressão do concreto, de acordo a Figura 4.20 (b).

Quando constante, o cobrimento do concreto não tem influência para diferentes valores de C_b , porém com grande relevância quando é acrescido, como visto na Figura 4.20 (c).

Figura 5.20 – Influência de f_{cu} : (a) $C_b \in \varphi$ constantes; (b) $C_b \in \rho$ constantes; (c) $\varphi \in \rho$ constantes (PANDA & GANGOLU, 2017).

• Influência de C_b

A Figura 4.21 (a); (b) e (c), representam uma tendência ascendente acentuada do efeito de C_b , independentemente de ρ , φ e f_{cu} respectivamente, desde que outros fatores sejam constantes.

Figura 5.21 – Influência de C_b : (a) $f_{cu} \in \varphi$ constantes; (b) $f_{cu} \in \rho$ constantes; (c) $\varphi \in \rho$ constantes (PANDA & GANGOLU, 2017).

Após as análises dos autores, conclui-se que o efeito de pino é favorável em seções mais dúcteis. O cobrimento de concreto é a variável com maior significância e o efeito de pino é em média 56% da resistência de cisalhamento quando desconsidera-se o engrenamento entre agregados.
5.2.4 LIMA et al. (2021)

O trabalho teve por objetivo criar um modelo matemático que prever de modo semi-empírico a resistência de cisalhamento de vigas com armadura transversal. O desempenho e acurácia da fórmula proposta foi comparado a ACI 318 (2019), AASHTO LRFD (2017), EUROCODE 2 (2004), ZSUTTY (1971), BENTZ *et al* (2006), RUSSO *et al*. (2005) e a um programa experimental com 07 vigas.

Primeiramente foi investigado os principais fatores que influenciam a capacidade última das vigas no esforço cortante. Foram utilizados a resistência à compressão do concreto (f'_c) , taxa de armadura longitudinal (ρ_l) , taxa de armadura transversal (ρ_w) , largura (b_w) , altura útil (d), relação do vão de cisalhamento pela altura útil (a/d) e tensão de ruptura da armadura transversal (f_{uw}) .

A partir de um banco de dados com 90 vigas que romperam ao cisalhamento por tração da diagonal comprimida, foram realizadas regressões univariadas de potência para compreender o comportamento em relação a carga última, como visto na Figura 4.22.

Figura 5.22 – Análise paramétrica do banco de dados.

Figura 5.23 – Análise paramétrica do banco de dados.

Através da análise do comportamento dos dados, é criado um parâmetro α de proporcionalidade entre os parâmetros, como visto na Equação 4.1.

$$\alpha = \frac{\rho_w \cdot f_{uw} \cdot \rho_l \cdot f'_c}{d \cdot b_w \cdot \frac{a}{d}}$$
Equação 4.1

Após, é acrescido dois parâmetros de armadura mínima da NBR 6118 (2014) representados na Equação 4.2 e 4.3.

$$\tau_{sw1} = 1,096 \cdot (\rho_w \cdot f_{uw})$$
 Equação 4.2

$$\tau_{sw1} = 0,0658 \cdot f'_{c}^{\frac{2}{3}}$$
 Equação 4.3

Relacionando a Equação 4.1, 4.2 e 4.3 tem-se de acordo com a Equação 4.4:

$$C_{sw} = \frac{16,66 \cdot (\rho_w \cdot f_{uw})^2 \cdot \rho_l \cdot f'_c^{\frac{1}{3}}}{b_w \cdot a}$$
 Equação 4.4

Associando a tensão última com o parâmetro C_{sw} , percebe-se um acréscimo significativo no coeficiente de correlação (R²) como representado na Figura 4.24.

Figura 5.24 - Influencia de C_{sw} e resultados do banco de dados

A fatoração da equação representada na regressão da Figura 4.24 é apresentada de acordo com a Equação 4.5 e definindo-se como o modelo teórico.

$$\tau_{u} = 23,18 \cdot f_{c}^{(0,065)} \cdot (\rho_{w} \cdot f_{uw})^{0,392} \cdot \left(\frac{\rho_{l}}{b_{w} \cdot a}\right)^{0,196}$$
 Equação 4.5

Para o programa experimental, foram ensaiadas 07 vigas de concreto armado com estribos divididas em 3 grupos: variação de taxa de armadura transversal, largura e altura útil. A Figura 4.25 e Tabela 4.2 apresentam respectivamente o modelo de ensaio, as características das vigas e cargas de ruptura.

Figura 5.25 – Detalhamento genérico do sistema de ensaio

Viga	b_{w}	d	а	С	f'_c	f_{uw}	$ ho_l$	$ ho_{\scriptscriptstyle W}$	P_u
v iga	(mm)	(mm)	(mm)	(mm)	(MPa)	(MPa)	(%)	(%)	(kN)
VR	150	175	450	1800			2,43	0,101	147,1
VSW1	150	175	440	1820	-		2,54	0,161	196,1
VSW2	150	175	440	1820	-		3,44	0,220	196,1
VB1	200	175	440	1820	50	670	2,19	0,106	161,8
VB2	250	175	440	1820	-		2,06	0,101	196,1
VD1	150	275	690	1320	-		2,40	0,101	284,4
VD2	150	375	940	820	-		2,32	0,101	147,1

Tabela 5.3 – Características das vigas e carga de ruptura

A análise do desempenho do modelo foi verificada pela relação entre os resultados experimentais (τ_{exp}) e teóricos (τ_{theo}) para averiguar o grau de proximidade dos modelos analisados como visto na Tabela 4.4.

Tabela 5.4 – Relação de $\tau_{\rm exp}$ / $\tau_{\rm theo}$

Viga	ACI	EC2	SCFT	AASHTO	Zsutty	Russo	Proposal
VR	1,50	2,40	1,31	1,22	1,51	0,98	1,03
VSW1	2,03	2,41	1,73	1,61	1,96	1,33	1,30
VSW2	2,33	2,47	1,95	1,80	2,19	1,48	1,44
VB1	2,29	3,35	1,98	1,86	2,31	1,54	1,64
VB2	1,57	2,33	1,36	1,28	1,59	1,07	1,18
VD1	1,94	3,02	1,74	1,63	1,95	1,39	1,41
VD2	2,00	3,32	2,04	1,88	2,13	1,60	1,66
Média	2,00	2,76	1,73	1,61	1,95	1,34	1,38
Desvio padrão (SD)	0,32	0,42	0,27	0,25	0,28	0,22	0,21
Coeficiente de Variação (COV)	16,06%	15,31%	15,66%	15,44%	14,24%	16,36%	15,49%

Foi utilizado um banco de dados de 160 vigas para constatar o modelo proposto em relação as tensões solicitantes das armaduras transversais ($\rho_w \cdot f_{yw}$), de acordo com a Figura 4.26 observa-se a dispersão dos resultados. Foi feito uma comparação análoga com o programa experimental como visto na Tabela 4.5.

Figura 5.26 - Tendência dos resultados teóricos.

Tabela 5.5 – Relação de τ_{exp} / τ_{theo}

	ACI	EC2	SCFT	AASHTO	Zsutty	Russo	Proposal
Média	1,09	1,54	1,11	1,07	1,05	1,05	0,94
SD	0,18	0,46	0,17	0,13	0,18	0,21	0,07
COV	16,67%	30,01%	15,10%	11,78%	17,34%	20,49%	7,25%

A fórmula proposta obteve resultados consistentes e acrescentou novos parâmetros ao modelo em relação aos outros, agregando maior simplicidade e eficiência nas estimativas.

6 ESTIMATIVAS DAS TENSÕES DE CISALHAMENTO

Neste capítulo, será descrito os modelos analisados, considerando suas características e especificidades que compõem o processo de cálculo. serão desconsiderados todos os coeficientes de segurança que possam majorar ou minorar os valores característicos das tensões últimas.

6.1 ACI 318 (2019)

A ACI 318 (2019) obteve mudanças significativas em relação a ACI 318 (2014), pois considera o efeito de pino a partir da taxa de armadura longitudinal (ρ_l) e o efeito de tamanho (λ) relacionando a altura útil (d), porém continua fundamentada na treliça clássica ($\theta = 45^{\circ}$), limitando a resistência à compressão do concreto (f'_c) em 69 MPa e a tensão de escoamento do aço (f_y) em 420 MPa. A Equação 5.1 apresenta a tensão nominal (v_n) que é restrita a parcela contribuinte do concreto ao cisalhamento (v_c).

$$v_n = 1,33 \cdot v_c \le \frac{5}{6} \cdot \sqrt{f'_c}$$
 Equação 5.1

$$v_c = \frac{2}{3} \cdot \lambda_s \cdot (\rho_l)^{\frac{1}{3}} \cdot \sqrt{f'_c}$$
 Equação 5.2

Onde:

$$\lambda_s = \sqrt{\frac{2}{1+0,004 \cdot d}}$$
 Equação 5.3

6.2 AASHTO-LRFD (2017)

A AASHTO-LRFD (2017) baseia-se no modelo simplificado do campo de compressão modificado (SCFT) de BENTZ *et al.* (2006). A resistência última é calculada de acordo com a Equação 5.4. O processo de cálculo é por meio iterativo. O intuito é equilibrar os valores da deformação longitudinal da armadura (ε_{sl}), o ângulo da biela (θ) e o fator de tensão no concreto fissurado (β) calculados respectivamente pelas Equações 5.5, 5.6 e 5.8.

$$\phi \cdot v_n = v_c = \beta \cdot \sqrt{f'_c}$$
 Equação 5.4

$$\beta = \frac{0.4}{1 + 1500 \cdot \varepsilon_{sl}} \cdot \frac{1300}{1000 + s_{xe}}$$
 Equação 5.5

$$\theta = (29 + 7000 \cdot \varepsilon_{sl}) \cdot \left(0,88 + \frac{s_{xe}}{2500}\right) \le 75^{\circ}$$
 Equação 5.6

Onde $\phi = 0,9$.

O modelo de BENTZ *et al.* (2006) considera o engrenamento de agregados a partir da distância entre fissuras (S_{xe}), utilizando o diâmetro máximo do agregado graúdo (D_{max}) e a distância vertical entre as armaduras longitudinais tracionadas e comprimidas (S_x)

$$s_{xe} = \frac{35 \cdot s_x}{16 + D_{\text{max}}} \ge 0,85 \cdot s_x$$
Equação 5.7

Para o cálculo da deformação longitudinal (ε_{sl}) considera-se o módulo de elasticidade do aço (E_s), o momento nominal solicitante (M_n) e a área de aço longitudinal (A_{sl}) de acordo com a Equação 5.8.

$$\varepsilon_{sl} = \frac{\frac{|M_n|}{d_v} + |V_n|}{E_s \cdot A_s}$$
 Equação 5.8

O modelo iterativo é exemplificado de acordo com a Figura 5.1, a iteração deve iniciar com $\varepsilon_{sl} = 0,001$.

Figura 6.1 - Modelo iterativo de acordo com BENTZ et al. (2006).

6.3 EUROCODE 2 (2002)

A norma europeia utiliza o modelo de treliça generalizada de RITTER-MÖRSCH com $21,8^{\circ} \le \theta \le 45^{\circ}$ desde que não haja necessidade da utilização de armadura transversal. Deste modo, a Equação 5.9 apresenta a tensão contribuinte do concreto ao cisalhamento onde $\rho_l \le 2\%$.

$$v_c = 0.18 \cdot \left(1 + \sqrt{\frac{200}{d}}\right) \cdot (100 \cdot \rho_l \cdot f'_c)^{\frac{1}{3}}$$
 Equação 5.9

$$\kappa = 1 + \sqrt{\frac{200}{d}} \le 2$$

6.4 RUSSO et al. (2005)

RUSSO *et al.* (2005) empregou uma abordagem mecânica e analítica, usando equações diferenciais de segunda ordem que correlacionam mecanicamente o plano de cisalhamento entre interfaces de vigas sem estribos, definiu-se parametricamente os valores otimizados das variáveis por meio de processos iterativos, utilizando um banco de dados com 126 vigas que romperam ao cisalhamento. Destaca-se na Equação 5.10 a utilização da tensão de escoamento da armadura longitudinal (f_{yl}), a relação entre o vão de cisalhamento e a altura útil (a/d) e o fator de *size effect* (ξ) de acordo com BAŽANT & KIM (1984).

$$\tau_{u} = 1,13 \cdot \xi \cdot \left[\rho_{l}^{0,4} \cdot f_{c}^{0,39} + 0,5 \cdot \rho_{l}^{0,83} \cdot f_{yl}^{0,89} \cdot \left(\frac{a}{d}\right)^{-1,2-0,45\frac{a}{d}} \right]$$
Equação 5.10

$$\xi = \left[\frac{1 + \sqrt{\frac{5,08}{D_{\text{max}}}}}{\sqrt{1 + \frac{d}{25 \cdot D_{\text{max}}}}}\right]$$
Equação 5.11

6.5 BAŽANT & SUN (1987)

BAŽANT & SUN (1987) realizaram a correlação da mecânica da fratura com o modo de ruptura de cisalhamento em vigas de concreto. Partindo para uma abordagem onde foi implementado um fator de *size effect* (ξ) idealizado por BAŽANT & KIM (1984). Deste modo, realizou-se iterações com um banco de dados para caracterizar o material ao modelo desejado. A fórmula 5.12 define o cálculo para resistência última.

$$v_c = 0,54 \cdot \xi \cdot \rho_l^{\frac{1}{3}} \cdot \left[\sqrt{f'_c} + 249 \cdot \sqrt{\frac{\rho_l}{\left(a/d\right)^5}} \right]$$
 Equação 5.12

7 MODELO PROPOSTO

7.1 Banco de dados

Confeccionou-se um banco de dados de acordo com os parâmetros que caracterizam o concreto estrutural, seguindo a NBR 6118 (2014) e ACI 318 (2019), ou seja, foi desconsiderado qualquer tipo de material que descaracterize mecanicamente o concreto como a fibra de aço. Foram utilizados um total de 220 vigas de 63 autores com ruptura ao cisalhamento. Na Tabela 6.1 é apresentado o banco de dados resumido com os intervalos mínimos e máximos de cada parâmetros em relação aos autores, a apresentação completa deste banco de dados é fornecido no Apêndice A.1.

Autor	Vigas	b _w (mm)	d (mm)	a / d	ρ _l (%)	f' _c (MPa)	D _{max} (mm)	f _y (MPa)	τ _{Lit} (MPa)
[1]	3	290-360	278	2.9	0.99-1.95	49.3-58.9	19	536	1.12-1.34
[2]	3	127	184-208	4	1.77-6.64	60.8-64.3	13	483-586	1.72-2.32
[3]	1	300	925	2.9	1.01	32	10	550	0.67
[4]	1	203	127	4.6	1.55	30.6	19	429	1.49
[5]	2	102	127	4.8	3.1	34.7	19	276	1.45-1.48
[6]	5	38	41-165	3	1.62	46.2-46.8	5	690	1.32-1.93
[7]	4	105-106	84-168	2.9	1.60-1.62	24.7-29.6	10	494	1.62-2.10
[8]	3	240	600-1200	3	0.63-1.26	24.7-29.6	30	434	0.64-0.83
[9]	2	152	292	3.1-3.7	1.59	18.4-22.9	25	307-323	0.82-0.96
[10]	3	305-310	461-466	4.7-6.8	1.81-2.73	22.6-37.6	19	552-555	1.16-1.29
[11]	1	135	234	3.4	1.07	31.5	19	483	1.31
[12]	9	23-200	42-177	3	1.70-1.80	30.9-64.0	2-10	414	1.25-2.79
[13]	6	102	137	3.2-3.9	1.86-2.89	14.9-31.2	25	328	1.09-1.60
[14]	1	200	359	3	2.24	68.9	12	483	1.39

Tabela 7.1 - Banco de dados resumido.

Autor	Vigas	b _w (mm)	d (mm)	a / d	ρ _l (%)	f' _c (MPa)	D _{max} (mm)	f _y (MPa)	τ _{Lit} (MPa)
[15]	4	169-300	225-920	2.5-3.0	0.81-1,03	50-99	10	437-486	0.84-1.26
[16]	3	152	252-254	3.0-4.0	3.33-3.36	21.5-22.1	25	310-393	1.21-1.97
[17]	18	21-321	61-170	2.7-4.0	1.85-2.08	14.9-34.6	12	367-436	1.23-2.54
[18]	1	250	326	3.1	1.23	44.6	18	460	1.43
[19]	3	178	267-268	4	1.63-3.21	65.5-79.3	13	434	1.33-1.66
[20]	4	400	190-440	2.5	1.20-2.00	34.2-58.6	10-20	385-477	1.12-1.51
[21]	8	155-158	191-196	3.6-3.7	2.20-2.28	31.1-86.2	18	443-651	1.77-2.81
[22]	1	100	372	5.9	1.08	22	20	800	0.81
[23]	5	914	184-191	3.1-3.2	0.60-1.24	48.3-49.0	19	594-673	0.90-1.20
[24]	2	150	203-207	3.9	2.02-3.22	26.6-83.3	10	350-532	1.53-2.65
[25]	13	152-155	140-1097	2.5-8.0	0.51-2.76	15.4-35.7	19	352-424	0.61-2.33
[26]	2	176-350	500-950	3	1.22-1.36	20.7-27.3	20	400	0.65-1.15
[27]	5	170-300	142-915	3	1.87-3.35	53.7	25	477	0.99-2.07
[28]	1	127	191	3	1.65	37.7	13	461	1.21
[29]	4	300	152-746	3.5-3.8	0.83-2.21	90.1-110.9	16	487-660	0.86-1.98
[30]	19	152	238-319	2.9-6.1	0.80-5.01	12.2-34.4	25	370-400	0.89-2.11
[31]	2	147-152	178-262	4.3-4.9	2.20-4.11	26.2-33.7	25	304-359	1.22-1.25
[32]	9	150-503	142-300	2.8-4.6	0.95-2.47	13.4-38.3	30	425-490	1.07-1.78
[33]	2	704-1169	287-507	3.6	1.04-1.69	39.4-41.0	10	413-467	1.23-1.33
[34]	2	150	200	2.8-3.6	1.34	24.2	20	463	1.28-1.50
[35]	1	400	162	4	1.38	29.6	16	542	1.50
[36]	2	203	403	3.8	2.54	25.2-29.2	25	505	0.99-1.08
[37]	7	100	150-225	3.0-4.0	2.55-2.65	32.4-127.5	19	367-403	1.84-3.21

Tabela 6.1 - Banco de dados resumido (Cont.).

Autor	Vigas	b _w (mm)	d (mm)	a / d	$ ho_l$ (%)	f' _c (MPa)	D _{max} (mm)	<i>f</i> _y (MPa)	$ au_{Lit}$ (MPa)
[38]	1	152	254	3	1.03	46.9	19	400	1.42
[39]	6	152-178	268-274	2.9-3.4	0.80-1.89	6.1-16.7	25	483	0.52-0.95
[40]	1	305	365	7.9	1.86	32.6	6	483	1
[41]	4	200	250	2.5-3.1	1.55-3.18	47.1-50.5	19	343	1.65-2.26
[42]	1	600	2000	3	0.14	26.2	25	999	0.32
[43]	2	152	272	3.4	0.98-1.46	26.2-28.1	19	621	1.09-1.31
[44]	1	200	305	3	3.89	61.9	12	483	2.79
[45]	3	151-153	267-269	4.2	0.25-0.63	29.7-31.0	13	524-1779	0.60-0.68
[46]	7	400-1200	83	5.4	1.51-1.66	28.1-37.8	10-20	670	1.26-1.75
[47]	1	150	160	3.1	4.09	84.5	16	474	2.51
[48]	3	90-180	111-262	3.6	2.64-2.65	23.0-24.2	30	407-481	1.16-1.46
[49]	3	701-706	305-307	3.4	0.93	37.1-37.8	10	448	1.15-1.21
[50]	1	300	1400	2.9	0.83	40.3	10	452	0.58
[51]	1	125	215	2.5	3.77	36.2-52.0	13	414	2.10
[52]	1	150	200	4.6	2.01	18.8	19	500	1.54
[53]	1	79	259	3.5	0.55	26.5	38	1434	0.83
[54]	2	102	127	3.5-4.5	1.64	34.1-37.3	19	483	1.49-1.60
[55]	3	160	325-346	2.7-3.5	0.72-1.54	28.9-33.2	20	483	1.14-1.36
[56]	2	203	370	3	1.03-1.55	28.9-33.2	10	350	0.82-1.34
[57]	3	60-200	139-465	3	1.35	22.7-28.4	2-38	420	0.97-1.45
[58]	7	150-300	207-442	3.0-4.0	1.82-3.24	54.0-97.7	16	500	1.36-2.78

Tabela 6.1 - Banco de dados resumido (Cont.).

						,			
Autor	Vigas	b _w (mm)	d (mm)	a / d	ρ _l (%)	f' _c (MPa)	D _{max} (mm)	f_y (MPa)	$ au_{Lit}$ (MPa)
[59]	1	457	360	3.4	0.36	43.7	19	745	0.82
[60]	1	200	125	3	0.83	22.9	16	440	1.26
[61]	1	127	216	3	2.07	39.7	19	421	1.34
[62]	1	229	227	4	1.54	36.3	25	600	1.08

Tabela 6.1 - Banco de dados resumido (Cont.).

[1] Adebar & Collins (1996); [2] Ahmad & Lue (1987); [3] Angelakos (2001); [4] Baron & Mark (1966); [5] Batson et al. (1972); [6] Bažant & Kazemi (1991); [7] Bentz & Buckley (2005); [8] Bhal (1967); [9] Bower & Viest (1960); [10] Bresler & Scordelis (1963); [11] Cederwall et al. (1974); [12] Chana (1981); [13] Chang & Kesler (1958); [14] Cladera (2005); [15] Collins & Kuchma (1999); [16] De cossio & Seiss (1960); [17] De cossio (1962); [18] El-Sayed et al. (2005); [19] Elzanaty et al. (1986); [20] Ghannoum (1998); [21] Hallgren (1994); [22] Hamadi & Regan (1980); [23] Heger & McGrath (1982); [24] Islam et al. (1998); [25] Kani et al. (1979); [26] Kawano & Wantanabe (1997); [27] Kim & Park (1994); [28] Kim et al. (1999); [29] Konig et al. (1997); [30] Krefeld & Thurston (1966); [31] Laupa et al. (1953); [32] Leonhardt & Walther (1962); [33] Lubell (2006); [34] Mansur (1986); [35] Marti et al. (1977); [36] Mathey & Watstein (1963); [37] Matsui et al. (1995); [38] Mattock (1969); [39] Moody et al. (1954); [40] Morrow & Viest (1957); [41] Muruyama & Iwabuchi (1986); [42] Niwa et al. (1986); [43] Placas & Regan (1971); [44] Rahal et al. (2004); [45] Rajagopalan & Ferguson (1968); [46] Regan & Rezai-Jorabi (1988); [47] Remmel (1991); [48] Ruesch & Haugli (1962); [49] Sherwood et al. (2006); [50] Sherwood et al. (2007); [51] Shin et al. (1999); [52] Smith (1970); [53] Sozen et al. (1959); [54] Swamy (1970); [55] Tariq & Newhook (2003); [56] Taylor (1968); [57] Taylor (1972); [58] Thorenfeldt & Drangshold (1990); [59] Tureyen & Frosch (2002); [60] Walraven & Lehwalter (1994); [61] Xie et al. (1994); [62] Yost et al. (2001).

As condicionantes a coleta do banco de dados foram:

- Seção transversal retangular constante ao longo da seção longitudinal;
- Sem estribo ou fibra de aço;
- Ter armadura longitudinal;
- Armadura longitudinal deformável;
- Ausência protensão ou cargas axiais;
- Concreto com densidade normal;
- Ruptura ao cisalhamento;
- Condições de apoio simples.

7.2 Correlação entre parâmetros

As aferições que possam definir o comportamento como diretamente ou inversamente proporcionais são indispensáveis para compreensão das variáveis que compõe a resistência de cisalhamento de vigas de concreto sem estribo do banco de dados (τ_{Lit}). A partir de regressões univariáveis e embasamento teórico da literatura científica sobre os fenômenos, como visto na Figura 6.1, é possível iniciar um modelo primário e posterior a análise de regressão não-linear por métodos iterativos.

Figura 7.1 - Análise paramétrica do banco de dados.

Destaca-se que alguns parâmetros como D_{max} e b_w não acompanham o comportamento demonstrado na Figura 6.1. BAŽANT & KIM (1984), que associa a mecânica da fratura com o modo de ruptura das vigas ao cisalhamento, demonstram que o fator de *size effect* (ξ) está diretamente ligada com a altura útil de acordo com a Equação 6.1, onde d_o é a constante do material. A Equação 6.2 pode ser relacionada com a resistência última de acordo com uma análise de banco de dados que os autores realizaram para definir a constante do *size effect* para o concreto.

$$v_c \propto \frac{1}{\sqrt{1 + \frac{d}{d_0}}}$$
Equação 6.1
$$\xi = \frac{1 + \sqrt{\frac{5,08}{D_{\text{max}}}}}{\sqrt{1 + \frac{d}{25 \cdot D_{\text{max}}}}}$$
Equação 6.2

De acordo com a Figura 6.2, ξ pode, dependendo da altura útil, fornecer valores que majorem ou minorem a resistência última, desta forma, a análise feita para o modelo proposto tende a simplificar e uniformizar esse efeito sob a influência de outros parâmetros em conjunto e utilizar o D_{max} como inversamente proporcional para iniciar o conjunto de iterações e definir a regressão não linear.

Figura 7.2 - Influência de D_{\max} e d no comportamento de ξ .

Segundo LUBELL (2004), CONFORTI *et al.* (2013), CONFORTI *et al.* (2015) e CONFORTI *et al.* (2017), A influência de b_w está diretamente relacionada a razão de retangularidade da seção transversal (b_w/d) e diretamente proporcional a tensão última.

Esse fenômeno é perceptível quando $\frac{b_w}{d} \ge 2$, como visto na Figura 6.3.

Figura 7.3 - Influência da relação $b_{\rm w}/d$ e $\tau_{\rm Lit}$.

Seguindo a relação de verossimilhança:

$$au_{\exp} \propto f'_c \qquad au_{\exp} \propto rac{d}{a} \qquad au_{\exp} \propto
ho_l \qquad au_{\exp} \propto b_w \qquad au_{\exp} \propto rac{1}{d} \qquad au_{\exp} \propto rac{1}{D_{\max}}$$

Portanto:

$$\tau_{\exp} \propto \frac{f'_c \cdot \rho_l \cdot b_w}{d \cdot D_{\max} \cdot \frac{a}{d}} = \gamma$$
 Equação 6.3

Usando-se uma análise linear para verificar o coeficiente de tensão solicitante (γ) em relação a resistência última e de acordo com a Figura 6.4, aumentou-se 21,20% no coeficiente de determinação.

Figura 7.4 – Influência da relação $\gamma \ {\rm e} \ \tau_{{\scriptscriptstyle Lit}}$.

Para definir o grau de relação entre as variáveis e a tensão de ruptura é necessário estabelecer a natureza dos dados. A partir da não linearidade e a não normalidade dos dados, definiu-se a matriz de correlação de Spearman.

Os valores dos coeficientes de correlação (r) são definidos entre -1, para relações inversamente proporcionais e 1 para relações diretamente proporcionais, os resultados devem se distanciar de 0, com intuito de maior relação com a tensão de ruptura, como visto na Tabela 6.2.

Variáveis	b_{w}	d	b_w / d	a / d	$ ho_l$	f'_c	$D_{\rm max}$	$ au_{\mathrm{exp}}$
b_w	1	0.393	0.470	0.148	-0.335	0.059	0.104	-0.334
d	0.393	1	-0.424	-0.061	-0.138	-0.007	0.277	-0.497
b_w / d	0.470	-0.424	1	0.247	-0.027	0.131	-0.079	0.251
a / d	0.148	-0.061	0.247	1	0.177	-0.121	0.196	-0.061
$ ho_l$	-0.335	-0.138	-0.027	0.177	1	0.025	0.189	0.560
f'_c	0.059	-0.007	0.131	-0.121	0.025	1	-0.487	0.408
D_{\max}	0.104	0.277	-0.079	0.196	0.189	-0.487	1	-0.218
$ au_{\mathrm{exp}}$	-0.334	-0.497	0.251	-0.061	0.560	0.408	-0.218	1

Tabela 7.2 - Matriz de correlação (Spearman).

Com objetivo a significância das variáveis na hipótese, foi definido por p < 5% como listado na Tabela 6.3.

Variáveis	b_{w}	d	b_w / d	a / d	$ ho_l$	f'_c	$D_{\rm max}$	$ au_{\mathrm{exp}}$
$b_{_{W}}$	0	< 0.0001	< 0.0001	0.028	< 0.0001	0.381	0.123	< 0.0001
d	< 0.0001	0	< 0.0001	0.367	0.041	0.916	< 0.0001	< 0.0001
b_w / d	< 0.0001	< 0.0001	0	0.000	0.694	0.053	0.242	0
a / d	0.028	0.367	0.000	0	0.009	0.074	0.004	0.364
$ ho_l$	< 0.0001	0.041	0.694	0.009	0	0.713	0.005	< 0.0001
f'_{c}	0.381	0.916	0.053	0.074	0.713	0	< 0.0001	< 0.0001
$D_{ m max}$	0.123	< 0.0001	0.242	0.004	0.005	< 0.0001	0	0.001
$ au_{\mathrm{exp}}$	< 0.0001	< 0.0001	0.000	0.364	< 0.0001	< 0.0001	0.001	0

Tabela 7.3 - Valores de significância de p.

Ao analisar os resultados, a/d apresenta p > 5%, porém ao comparar as hipóteses da Tabela 6.4 com a matriz de correlação, observa-se que a inserção deste parâmetro é mais relevante.

Tabela 7.4 - Matriz de correlação (Spearman) para o efeito de a/d.

Variáveis	$ au_{ m exp}$	$\frac{f'_c \cdot \rho_l \cdot b_w}{d \cdot D_{\max} \cdot \frac{a}{d}}$	$\frac{f'_c \cdot \rho_l \cdot b_w}{d \cdot D_{\max}}$
$ au_{\mathrm{exp}}$	1	0.606	0.593
$\frac{f'_c \cdot \rho_l \cdot b_w}{d \cdot D_{\max} \cdot \frac{a}{d}}$	0.606	1	0.985
$\frac{f'_{c} \cdot \rho_{l} \cdot b_{w}}{d \cdot D_{\max}}$	0.593	0.985	1

Por meio de uma hipótese que os parâmetros incorporados em γ , possam ter graus de preponderância diferentes para o colapso, então, determina-se que haja expoentes e um numerador que normalize os dados e consiga convergir os valores para uma resistência de cisalhamento teórica (τ_u) a partir da Equação 6.4, que aproxime-se do experimental.

$$\tau_{\exp} = k_1 \cdot \left[\frac{f_c \cdot x_1 \cdot \rho_l \cdot x_2 \cdot b_w \cdot x_3}{d^{x_4} \cdot D_{\max} \cdot x_5 \cdot \left(\frac{a}{d}\right)^{x_6}} \right]$$
Equação 6.4

Com a utilização da regressão não linear de múltiplas variáveis com o auxílio de um algoritmo de otimização é possível resolver por um método de tentativas, minimizar os erros envolvendo os parâmetros e os resultados experimentais para alcançar um valor teórico otimizado de acordo com a Figura 6.5.

Figura 7.5 - Organograma para o cálculo das variáveis.

Utilizando computacionalmente o algoritmo, os valores respectivos das variáveis são $k_1 = 2,193$, $x_1 = 0,259$, $x_2 = 0,422$, $x_3 = 0,041$, $x_4 = 0,263$, $x_5 = 0,015$, $x_6 = 0,308$.

Deste modo, a Equação 6.5 apresenta a fórmula proposta para resistência de cisalhamento de vigas de concreto sem estribo (τ_u).

$$\tau_{u} = 2,193 \cdot \frac{f_{c}^{(0,259)} \cdot \rho_{l}^{(0,422)} \cdot b_{w}^{(0,041)}}{d^{(0,263)} \cdot D_{\max}^{(0,015)} \cdot \left(\frac{a}{d}\right)^{(0,308)}}$$
Equação 6.5

8 ANÁLISE COMPARATIVA DOS RESULTADOS

Com objetivo de investigar e validar o desempenho do modelo proposto, foi utilizada uma análise comparativa entre modelos de cálculo a partir de um banco de dados com 510 vigas de 68 autores (Apêndice B). A verificação da acurácia ocorrerá através da dispersão entre a razão de resultados experimentais e teóricos ($\lambda = \tau_{Lit} / \tau_{Theo}$).

O desempenho da fórmula será com base no critério de COLLINS (2001) adaptado de MORAES NETO *et al.* (2015) com o propósito de penalizar, individualmente por pontos, os resultados de λ com a classificação da Tabela 7.1. A somatória das penalidades, média, desvio padrão e coeficiente de variação dos modelos analisados são apresentados na Tabela 7.2.

$\lambda = au_{Lit} / au_{Theo}$	Classificação	Penalidade
<0,50	Extremamente perigoso	10
[0,50-0,85[Perigoso	5
[0,85 - 1,15[Segurança apropriada	0
[1,15-2,00[Conservador	1
≥2,00	Extremamente conservador	2

Tabela 8.1 - Critério de COLLINS (2001) (adaptado de MORAES NETO et al., (2014)).

$\lambda = au_{ex ho} / au_{theo}$	Penalidade	ACI	AASHTO	EC2	RUSSO	BAŽANT	PROPOSTA
<0,5	10	0	0	0	0	0	0
[0,5-0,85[5	121	19	37	27	9	0
[0,85-1,15[0	349	457	359	414	421	0
[1,15-2,00[1	43	37	117	72	83	0
≥2,00	2	0	0	0	0	0	0
Tota	1	648	153	302	207	128	0
Médi	a	0,94	1,08	1,05	1,03	1,05	0,99
DP		0,145	0,121	0,162	0,112	0,107	0,062
CV		15,39%	11,21%	15,36%	10,87%	10,25%	6,23%

Tabela 8.2 - Resultado da avaliação do Critério de demérito.

A equação proposta não obteve pontuação no critério de penalidade, o coeficiente de variação foi 79,9% menor que a AASHTO-LRFD (2017) e 147% para a ACI 318 (2019), desempenhando maior acurácia e assertividade. A Figura 7.1 mostra como esses resultados estão distribuídos fora do valor ideal de $\lambda = 1$. Nota-se que tendem a ser mais conservadores quanto maior a média dos resultados. Como visto na Figura 7.2, o modelo proposto não apresentou convergências em todo intervalo de valores.

Figura 8.1 - Proporção das vigas favoráveis a segurança

Figura 8.2 - Análise da relação τ_{Lit} / τ_{theo} .

Figura 7.2 – Análise da relação τ_{Lit} / τ_{theo} (Cont.).

8.1 Análise de Dispersão

Como visto na Figura 7.2, os modelos utilizados apresentam diferentes graus de distribuição dos resultados e assimetrias. Dependendo da dispersão dos dados, os valores teóricos apresentam tendências a serem conservadores e perigosos de acordo com o intervalo, como pode ser observado, principalmente, pela norma EUROCODE 2 (2004), pelos autores RUSSO *et al.* (2005) e BAŽANT & SUN (1987) e representado graficamente pelo *box-plot* a partir da dispersão e valores excedentes (*outliers*) dos resultados de τ_{Lit} / τ_{theo} na Figura 7.3.

Figura 8.3 – Gráfico box-plot.

No intuito de definir os espaços amostrais que os modelos tem maior dispersão na assertividade dos valores teóricos, serão apresentados os desvios em relação a alguns parâmetros e tendências em razão de λ através de gráficos *box-plot*, coeficiente de variação (\downarrow) e penalidades segundo o critério de COLLINS (2001) adaptado de MORAES NETO *et al.* (2015) dividido pelo número de amostras do intervalo (\uparrow).

8.1.1 Resistência à compressão (f'_c)

A ACI 318 (2019) apresenta queda nas médias e aumento das penalidades unitárias (†), destaca-se que a ACI 318 (2019), limitando a resistência à compressão em 69 MPa, tem maior dispersão no intervalo de 20-40 MPa. A EUROCODE 2 (2004) tem linearidade nos resultados de λ com exceção da faixa de 60-80 MPa.

BAŽANT & SUN (1987) e RUSSO *et al.* (2005) tem maior consistência nos resultados com f'_c maior que 40 MPa e queda dos coeficientes de variação entre 46,3% e 36,1%, como visto na Figura 7.4.

Figura 8.4 – Tendência dos resultados teóricos com *box-plot* (f'_c).

A ACI 318 (2019), EUROCODE 2 (2004) e RUSSO *et al.* (2005) tem tendência de decréscimo das médias e acréscimo das penalidades unitárias, exceto quando a/d > 6, RUSSO *et al.* (2005) tem penalidade nula, assim como a AASHTO-LRFD (2017). O coeficiente de variação teve redução de 56,3% para ACI 318 (2019) entre o intervalo de 2,5 < a/d < 9. BAŽANT & SUN (1987) apresentou acréscimo nos valores de λ e das penalidades até a/d > 6 reduzir em 92,7%, como destacado na Figura 7.5.

8.1.3 Taxa de armadura longitudinal (ρ_l)

Destaca-se que as normas e RUSSO *et al.* (2005) tem tendências conservadoras quando estima os valores mesmo considerando o efeito de pino com a adição da taxa de armadura longitudinal no processo de cálculo dos modelos, principalmente no intervalo entre 1,6% e 3,2% de ρ_l onde ocorre a maior dispersão de valores. Com os dados mais conservadores, o critério de demérito tende a diminuir as penalidades entre 50% e 64,5%, porém sem acrescentar melhor assertividades, de acordo com a Figura 7.6.

8.2 Análise fatorial dos dados

Quando verifica-se o espaço amostral do banco de dados utilizado para análises dos modelos, há a necessidade de explorar eventos possíveis que se correlacionem, ou seja, averiguar configurações hipotéticas de ruptura ao cisalhamento.

Partindo do modelo de permutação de dados para encontrar todas as possibilidades, as variáveis f'_c , ρ_l , b_w , d, a/d, D_{max} e f_y , foram divididas unitariamente em 6 grupos, seguindo os limites mínimos e máximos, somando $6^7 = 279936$ configurações. A Tabela 7.3 apresenta todos os valores associados entre si.

f'_c	$ ho_l$	$b_{_{W}}$	d	a/d	$D_{ m max}$	${f_y}$
(MPa)	(%)	(mm)	(mm)	u / u	(mm)	(MPa)
11,20	0,14	23	41	2,50	2,00	42
31,14	1,44	618	433	3,69	11,60	389
51,08	2,74	1214	825	4,88	21,20	737
71,02	4,04	1809	1216	6,08	30,80	1084
90,96	5,34	2405	1608	7,27	40,40	1432
110,90	6,64	3000	2000	8,46	50,00	1779

Tabela 8.3 – Grupos para análise fatorial.

O número total de configurações de cada modelo foi filtrado das vigas que ocasionalmente rompem à flexão. Foi utilizado a metodologia de cálculo de CAVAGNIS *et al.* (2018), de acordo com a Equação 7.1, 7.2 e 7.3, utilizando o módulo de elasticidade do concreto (E_c) , módulo de elasticidade do aço (E_s) e a altura da zona de compressão (c) para estimar a resistência última à flexão e filtrar das análises.

$$M_f = A_s \cdot f_y \cdot (d - c/3)$$
 Equação 7.1

$$E_{c} = 10000 \cdot f_{c}^{1/3}$$
 Equação 7.2

$$c = d \cdot \rho \cdot \frac{E_s}{E_c} \left(\sqrt{1 + \frac{2 \cdot E_c}{\rho \cdot E_s}} - 1 \right)$$
 Equação 7.3

A Tabela 7.4 representa a quantidade de vigas que podem romper ao cisalhamento e que serão averiguadas.

Tabela 7.4 – Parcela de Vigas filtradas.									
ACI	AASHTO	EC2	BAŽANT	RUSSO	Modelo proposto				
176292	202602	192492	198294	200370	198078				

Foi selecionando o parâmetro α , sendo de maior correspondência com valores de tensão experimental, com intuito de relacionar o nível de correlação com os valores teóricos pelo banco de dados de 510 vigas, como apresentado na Figura 7.7.

Figura 8.7 – Comportamento dos valores teóricos com α .

Após a correlacionar as estimativas teóricas, percebe-se que fundamentalmente os modelos têm uma tendência e coeficiente de correlação a seguir, portanto, avalia-se que a equação que rege essa tendência tenda a convergir em um espaço amostral maior, ou seja, o coeficiente de correlação precisa ser o mais próximo em dois espaços amostrais que comtemplem os mesmos valores entre variáveis intrínsecas em α . A Figura 7.8 apresenta um compilado de comparações entre linhas de tendências para os respectivos espaços amostrais, sendo o banco de dados de 510 vigas e a geração de hipóteses pela combinação fatorial. A Figura 7.9 ilustra os resultados possíveis e filtradas da análise.

Figura 8.8 - Correlação entre banco de dados e análise fatorial.

Figura 8.9 - Valores teóricos distintos e vigas analisadas.

Através da Figura 7.8, verifica-se que RUSSO *et al.* (2005) apresenta significativa dispersão dos resultados, distanciando o coeficiente de correlação em 51,82%, sendo pouco representativo quando comparado com o banco de dados. A ACI 318 (2019) e EUROCODE 2 (2004) destacam-se pelo baixo número de resultados possíveis, abrangendo um curto espaço amostral. O modelo proposto, que contempla 6 variáveis das 7 utilizadas, contempla, em relação a combinação de 6^6 , 95,3% dos valores teóricos e com uma diferença entre R² de 1,97%.

9 CONCLUSÃO

A equação proposta acrescentou melhorias expressivas as estimativas da resistência ao cisalhamento em relação aos modelos comparados através de um banco de dados com 510 vigas. A partir dos resultados aferidos, nota-se a linearidade e baixa dispersão dos dados em relação aos parâmetros adotados. Comparando a acurácia e grau de segurança do modelo teórico, pondera-se a redução entre 35% e 59,5% no coeficiente de variação, assim como a pontuação nula no critério de penalidades.

Através da análise fatorial, com aspecto de abranger diferentes probabilidades de configurações de vigas, que podem romper ao cisalhamento e prever indiretamente o nível de acurácia dos modelos em manter seus graus de assertividade, destacou-se que o modelo proposto detém significativa aproximação em manter os valores teóricos próximos da tendência de um banco de dados experimental.

Considerando a complexidade do fenômeno de cisalhamento em vigas de concreto, o significativo período de pesquisas por modelos de cálculo e simplicidade da equação proposta, considera-se satisfatória a aplicação da regressão não-linear de múltiplas variáveis para resolução da problemática apresentada.

REFERÊNCIAS BIBLIOGRÁFICAS

AASHTO, "LRFD Bridge Design Specifications," eighth edition, American Association of State Highway Transportation Officials, Washington, DC, 2017.

Adebar, P. E., and Collins, M. P., "Shear strength of members without transverse reinforcement," *Canadian Journal of Civil Engineering*, V. 23, No. 1, 1996, pp. 30-41.

Ahmad, A. H., and Lue, D. M., "Flexure-Shear Interaction of Reinforced High Strength Concrete Beams," *ACI Journal Proceedings*, V. 84, No. 4, 1987, pp. 330-341.

American Concrete Institute 318, "Building Code Requirements for Structural Concrete," American Concrete Institute, Farmington Hills, Michigan, 2019, 623 pp.

Angelakos, D., Bentz, E. C., and Collins, M. P., "Effect of Concrete Strength and Minimum Stirrups on Shear Strength of Large Members", *ACI Structural Journal*, V. 98, No. 3, 2001, pp. 290-300.

Aster, H., and Koch, R., "Schubtragfähigkeit dicker Stahlbetonplatte," *Bewton und Stahlbetonbau*, V. 69, No. 11, 1974, pp. 266-270.

Baron, M. J., "Shear Strength of Reinforced Concrete Beams at Points of Bar Cutoff," ACI Journal Proceedings, V. 63, No. 1, 1966, pp. 127-134.

Batchelor, B. D., and Kwun, M., "Shear in RC Beams without web reinforcement," *ASCE Journal of Structural Engineering*, V. 107, No. 5, 1981, pp. 907-921.

Batson, G., Jenkins, E., and Spatney, R. "Steel Fibers as Shear Reinforcement in Beams," *ACI Journal Proceedings*, V. 69, No. 10, 1972, pp. 640-644.

Bažant, Z. P., and Kazemi, M. T., "Size Effect on Diagonal Shear Failure of Beams Without Stirrups," *ACI Structural Journal*, V. 88, No. 3, 1991, pp. 268-276.

Bažant, Z. P., and Kim, J. K., "Size Effect in Shear Failure of Longitudinally Reinforced Beams," *ACI Structural Journal*, V. 81, No. 5, 1991, pp. 456-468.

Bažant, Z. P., and Sun, H. H., "Size Effect in Diagonal Shear Failure: Influence of Aggregate Size and Stirrups," *ACI Structural Journal*, V. 84, No. 4, 1987, pp. 259-272.

Bentz, E. C., and Buckley, S., "Repeating a Classic Set of Experiments on Size Effect in Shear of Members without Stirrups," *ACI Structural Journal*, V. 102, No. 6, 2005, pp. 832-838.

Bentz, E. C., Vecchio, F. J., and Collins, M. P., "Simplified Compression Field Theory for Calculating Shear Strength of Reinforced Concrete Elements," *ACI Structural Journal*, V. 103, No. 4, 2006, pp. 614-624.

Bhal, N. S., "Über den Einfluss der Balkenhöhe auf die Schubtragfähigkeit von einfeldrigen Stahlbetonbalken mit und ohne Schubbewehrung," (in German) PhD Thesis, Stuttgart University, 1967, 125 pp.

Bower, J. E., and Viest, I. M. "Shear Strength of Restrained Concrete Beams Without Web Reinforcement," *ACI Journal Proceedings*, V. 57. No. 7, 1960, pp. 73-98.

Bresler B., and Scordelis, A. C., "Shear Strength of Reinforced Concrete Beams," ACI Journal Proceedings, V. 60, No. 1, 1963, pp. 51-74.

Cao, S., "Size effect and the influence of longitudinal reinforcement on the shear response of large reinforced concrete members," Masters thesis, Department of Civil Engineering, University of Toronto, 2001, 187 pp.

Cavagnis, F., Ruiz, M. F., and Muttoni, A., "Shear Strength of Members without Transverse Reinforcement Based on Development of Critical Shear Crack" *Engineering Structures*, V. 157, 2018, pp. 300-315.

Cavagnis, F., Simões, J. T., Ruiz, M. F., and Muttoni, A., "Shear Strength of Members without Transverse Reinforcement Based on Development of Critical Shear Crack" *ACI Structural Journal*, V. 117, No. 1, 2020, pp. 103-118.

Cederwall, K., Hedman, O., and Loeberg, A., "Shear Strength of Partially Prestressed Beams with Pretensioned Reinforcement of High Grade Deformed Bars," *ACI Special Publication* 42: 1974, pp. 215-230.

Chana, P. S., "Some aspects of modelling the behaviour of reinforced concrete under shear loading," Cement and Concrete Association Technical Report No. 543. C&CA, Wexham Springs, United Kingdom, 1981, 22 pp.

Chang, T. S., and Kesler, C. E., "Static and Fatigue Strength in Shear of Beams with Tensile Reinforcement," *ACI Journal Proceedings*, V. 54, No. 6, 1958, pp. 1033-1057.

Cladera, A., and Mari., A. R., "Experimental study on high-strength concrete beams failing in shear," *Engineering Structures*, V. 27, No. 10, 2005, pp. 1519-1527.

Collins, M. P., Evaluation of shear design procedures for concrete structures. A report prepared for the CSA technical committee on reinforced concrete design, 2001.

Collins, M. P., Bentz, E. C., Sherwood, E. G., and Xie, L., "An Adequate Theory for the Shear Strength of Reinforced Concrete Structures," *Magazine of Concrete Research*, V. 60, No. 9, 2008, pp. 635-650.

Collins, M. P., Mitchell, D., Adebar, P., and Vecchio, F. J., "A General Shear Design Method," *ACI Structural Journal*, V. 93, No. 1, 1996, pp. 36-45.

Collins, M. P., and Kuchma, D., "How Safe Are Our Large, Lightly Reinforced Concrete Beams, Slabs, and Footings?," *ACI Structural Journal*, V. 96, No. 4, 1999, pp. 482-490.

Diaz de Cossio, R., and Seiss, C. P., "Behavior and Strength in Shear of Beams and Frames Without Web Reinforcement," *ACI Journal Proceedings*, V. 56, No. 2, 1960, pp. 695-736.

Diaz de Cossio, R., "Discussion to 326 Report," ACI Journal Proceedings, V. 59 No. 11, 1962, pp. 1323-1349.

El-Sayed, A., El-Salakawy, E., and Benmokrane, B., "Analytical Modeling of FRP-Reinforced Concrete Beams Failed in Shear," 1st CSCE Specialyt Conference on Infrastructure Technologies, Manament and Policy, Toronto, Canada, 2005, FR-127-1-FR-127-10.

Elzanaty, A. H., Nilson, A. H., and Slate, F. O., "Shear Capacity of Reinforced Concrete Beams Using High-Strength Concrete," *ACI Journal Proceedings*, V. 83, No. 2, 1986, pp. 290-296.

EN 1992-1-1, "Eurocode 2-Design of Concrete Structures-Part. 1: General Rules and Rules for Buildings," European Committee for Standardization, Brussels, Belgium, 2004, 225 pp.

Gergely, P., "Splitting Cracks Along the Main Reinforcement in Concrete Members," Department of Structural Engineering, Report, Cornell University, Ithaca, NY, 1969.

Ghannoum, W. M., "Size effect on Shear Strength of Reinforced Concree Beams," M. Eng. Thesis, Department of Civil Engineering and Applied Mechanics, McGill University, 1998, 115 pp.

Guadagnini, M., Pilakoutas, K., and Waldron, P., "Shear resistance of FRP RC Beams: Experimental study," *Journal of Composites for Construction*, 2006, pp. 464-473.

Hallgren, M., "Flexural and Shear Capacity of Reinforced High-strength Concrete Beams without Stirrups," Licentiate degree, Royal Institute of Technology, Stockholm, Sweden, 1994, 150 pp.

Hallgren, M., "Punching shear capacity of reinforced high strength concrete slabs," Doctoral Thesis, Royal Institute of Technology (KTH), Stockholm, Sweden, 1996, 206 pp.

Hamadi, Y. D., and Regan, P. E., "Behavior in shear of beams with flexural cracks," *Magazine of Concrete Research*, V. 32, No. 1, 1980, pp. 67-77.

Hanson, J. W., "Tensile Strength and Diagonal Tension Resistance of Structural Lightweight Concrete," *ACI Journal Proceedings*, V. 58, No. 7, 1961, pp. 1-40.

Hassan, A. A. A., Hossain, K. M. A., and Lachemi, M., "Strength, Cracking and Deflection Performance of Large-Scale Self-Consolidating Concrete Beams Subjected to Shear Failure," *Engineering Structures*, V. 32, No. 5, 2010, pp. 1262-1271.

Heger, F. J., and McGrath, T. J., "Design Method for Reinforced Concrete Pipe and Box Sections," Simpson, Gumpertz & Heger Inc, 1982, 251 pp.

Higgins, C., Miller, T. H., Rosowsky, D. V., Yim, S. C., Potisuk, T., Daniels, T. K., Nicholas, B. S., Robelo, M. J., Lee, A. Y., and Forrest, R. W., "Assessment Methodology for Diagonally Cracked Reinforced Concrete Deck Girders", Final Report for Oregon Department of Transportation and the Federal Highway Administration, Final Report SPR 350, SR 500-091, 2004, 340 pp.

Houde, J., "Study of Force-Displacement Relationships for the Finite Element Analysis of Reinforced Concrete," Structural Concrete Series No. 73-2, McGill University, Montreal, QC, Canada, 1973.

Islam, M. S., Pam, H. J., and Kwan, A. K. H., "Shear Capacity of High-Strength Concrete Beams with Their Point of Inflection within The Shear Span," *Proceedings of the Institution of Civil Engineers – Structures and Buildings*, V. 128, 1998, pp. 91-99.

Ismail,K. S., Guadagnini, M., and Pilakoutas, K., "Shear Behavior of Reinforced Concrete Deep Beams," *ACI Structural Journal*, V. 114, No. 1, 2017, pp. 87-99.

Kani, M. W., Huggins, M. W., and Wittkopp, R. R. "Kani on Shear in Reinforced Concrete," University of Toronto Press, Toronto, Canada, 1979, 225 pp.

Kawano, H., and Watanabe, H., "Shear Strength of Reinforced Concrete Columns – Effect of Specimen Size and Load Reversal," Proceedings of the Second Italy-Japan Workshop on Seismic Design and Retrofit of Bridges, Rome, Italy, 1997, pp. 141-154.

Kim, J. K., and Park. Y. D., "Shear strength of reinforced high strength concrete beams without web reinforcement," *Magazine of Concrete Research*, V. 46, No. 166, 1994, pp. 7-16.

Kim, D., Kim, W., and White, R. N. "Arch Action in Reinforced Concrete Beams-A Rational Prediction of Shear Strength", *ACI Structural Journal*, V. 96, No. 4, 1999, pp. 586-593.

Konig, G., Grimm, R., and Remmel, G., "Shear Behaviour of Longitudinally Reinforced Concrete Members of HSC," *Darmstadt Concrete*, V. 8, 1993, pp. 27-42.

Krefeld, W. J., and Thurston, C. W., "Studies of the Shear and Diagonal Tension Strength of Simply Supported Reinforced Concrete Beams," *ACI Journal Proceedings*, V. 63, No. 4, 1966, pp. 451-476.

Kulkarni, S. M., and Shah, S. P., "Response of Reinforced Concrete Beams at High Strain Rates," *ACI Structural Journal*, V. 95, No. 6, 1998, pp. 705-715.

Lachemi, M., Hossain, K. M. A., and Lambros, V., "Shear Resistance of Self-Consolidating Concrete Beams - Experimental Investigations," *Canadian Journal of Civil Engineering*, Vol. 32, No. 6, 2005, pp. 1103-1113.

Laupa, A., Siess, C. P., and Newmark, N. M., "The Shear Strength of Simple-Span Reinforced Concrete Beams without Web Reinforcement," Engineering Experimental Station Bulletin No. 428, University of Illinois, 1953, 57 pp.

Leonhardt, N. M.; Mönnig, E.; Construções de concreto – Princípios básicos do dimensionamento de estruturas de concreto armado. V. 1, Rio de Janeiro, Editora interciência, 1994.

Leonhardt, F., and Walther, R., "The Stuttgart Shear Tests 1961," A translation of the articles that appeared in *Beton und Stahlbetonbau*, V. 56, No. 12, 1961 and V.57, No. 2,3,6,7 and 8, 1962, Cement and Concrete Association Library Translation No. 111, Wexham Springs, United Kingdom, 1964, 134 pp.

Lima, J., Reis, L., and Oliveira, D., "A Model for Shear Resistance of Reinforced Concrete Beams," *ACI Structural Journal*, V. 118, No. 5, 2021, pp. 17-26.

Lubell, A. S., "Shear in wide reinforced concrete members," PhD thesis, Department of Civil Engineering, University of Toronto, 2006, 455 pp.

Mansur, M. A., Ong, K. C. G., and Paramasivam, P., "Shear strength of firbrous concrete beams without stirrups," *ASCE Journal of Structural Engineering*, V. 112, No. 9, 1986, pp. 2066-2079.

Marti, P., Pralong, J., and Thurlimann, B., "Schubversuche an Stahlbeton-Platten" (in German), Institut für Baustatik und Konstruktion, ETH Zürich, Bericht No. 7305-2, 1977, 123 pp.

Mathey, R. G., and Watstein, D., "Shear Strength of Beams Without Web Reinforcement Containing Deformed Bars of Different Yield Strengths," *ACI Journal Proceedings*, V. 60, No. 2, 1963, pp. 183-208.

Matsui, Y., Kurihara, N., Uchida, Y., Rokugo, K., and Koyangi, W., "Shear capacity of rienforced high strength concrete beams without shear reinforcement," Transactions of the Japan Concrete Institute, V. 17, 1995, pp. 319-326.

Mattock, A. H., "Diagonal Tension cracking in Concrete Beams with Axial Forces," *ASCE Journal of the Structural Division*, V. 95, No. 9, 1969, pp. 1887-1900.

Moody, K. G., Viest, I. M., Elstner, R. C., and Hognestad, E., "Shear Strength of Reinforced Concrete Beams Part 1 -Tests of Simple Beams," *ACI Journal Proceedings*, V. 51, No. 12, 1954, pp. 317-332.

Moraes Neto, B. N., Barros, J. A. O., and Melo, G. S. S. A., "A model for the prediction of the punching resistance of steel fibre reinforced concrete slabs centrically loaded," *Construction and Building Materials*, V. 46, 2013, pp. 211-223.

Morrow, J., and Viest, I. M., "Shear Strength of Reinforced Concrete Frame Members Without Web Reinforcement," *ACI Journal Proceedings*, V. 53, No. 3, 1957, pp. 833-869.

Mphonde, A. G., and Frantz, G. C., "Shear Tests of High- and Low-Strength Concrete Beams with Stirrups," *ACI Special Publication*, SP-87, 1985, pp. 179-196.

Muruyama, Y., and Iwabuchi, A., "Flexural and shear strength of reinforced high-strength lightweight concrete beams," Transactions of the Japan Concrete Institute, V. 8, 1986, pp. 267-274.

Niwa, J., Yamada, K., Kokozawa, K., and Okamura, M., "Revaluation of the Equation for Shear Strength of Reinforced Concrete-Beams without Web Reinforcement," Translation of *JSCE*, V. 1986, No. 372, 1986, pp. 167-176.

Panda, S. S., and Gangolu, A. P., "Study of Dowel Action in Reinforced Concrete Beam by Factorial Design of Experiment," *ACI Structural Journal*, V. 114, No. 6, 2017, pp. 1495-1505.

Placas A., and Regan, P. E., "Shear Failure of Reinforced Concrete Beams," ACI Journal Proceedings, V. 68, No. 10, 1971, pp. 763-773.

Poli, S. D., Gambarova, P. G., and Kakakoç, C., "Aggregate Interlock role in RC Thin-Webbed Beam in Shear," *ASCE Journal of Structural Engineering*, V. 113, No. 1, 1987, pp. 1-19.

Rahal, K. N., and Al-Shaleh, K. S., "Minimum Transverse Reinforcement in 65 MPa Concrete Beams," *ACI Structural Journal*, V. 101, No. 6, 2004, pp. 872-878.

Rajagopalan, K. S., and Ferguson, P. M., "Exploratory Shear Tests Emphasizing Percentage of Lightweight Steel," *ACI Journal Proceedings*, V. 65, No. 8, 1968, pp. 634-638.

Regan, P. E., and Rezai-Jorabi, H., "Shear Resistance of One-Way Slabs Under Concentrated Loads," *ACI Structural Journal*, V. 85, No. 2, 1988, pp. 150-157.

Reineck, K. H., Koch, R., and Schlaich, J., "Shear Tests on Reinforced concrete beams with axial compression for offshore structures," Institut für Massivbau, Universität Stuttgart, Stuttgart, Germany, 1978.

Remmel, G., "Influence of the tensile behavior on the shear strength of longitudinally reinforced concrete members," *Darmstadt Concrete Annual*, V. 7, 1991, pp. 257-266.

Richart, F. E., "Reinforced Concrete Wall and Column Footings," *Journal of the American Concrete Institute Proceedings*, Vol. 45, Part 1, No. 10, 1948, pp. 97-127, Part 2, No. 11, 1948, pp. 237-260.

Ruesch, M., Haugli, O., and Mayer, M., "Schubversuche an Stahlbeton-Rechteckbalken mit gleichmäkig verteilter Belastung," (in German), Deutcher Ausschuss fur Stahlbeton, Berlin, Germany, 1962, pp. 4-30.

Russo, G., Somma, G., and Mitri, D., "Shear Strength Analysis and Prediction for Reinforced Concrete Beams without Stirrups," *ASCE Journal of Structural Engineering*, V. 131, No. 1, 2005, pp. 66-74.

Scholtz, H., "Ein Querkrafttragmodell für Bauteile ohne Schubbewehrung im Bruchzustand aus normalfestem und hochfestem Beton," (in German), Dissertation, Beriche aus konstruktiven Ingenieurbau, Techniche Universität Berlin, Berlin, Germany, 1994, 220 pp.

Seliem, H., Hosny, A., Dwairi, H., and Rizkalla, S., "Shear behavior of concrete beams reinforced with MMFX steel without web reinforcement," NC State University Final Report, Project No. IS-06-08, 2006, 21 pp.
Sherwood, E. G., Lubell, A. S., Bentz, E. C., and Collins, M. P., "One-Way Shear Strength of Thick Slabs and Wide Beams," *ACI Structural Journal*, V. 103, No. 6, 2006, pp. 794-802.

Sherwood, E. G., Bentz, E. C., and Collins, M. P., "Effect of Aggregate Size on BeamShear Strength of Thick Slabs," *ACI Structural Journal*, V. 104, No. 2, 2007, pp. 180-190.

Shin, S. W., Lee, K. S., Moon, J. I., and Ghosh, S. K., "Shear Strength of Reinforced HighStrength Concrete Beams with Shear Span-to-Depth Ratios between 1.5 and 2.5," *ACI Structural Journal*, V. 96, No. 4, 1999, pp. 549-556.

Smith, R. B. L., "Shear reinforcement of reinforced concrete beams subject to distributed loading," *Magazine of Concrete Research*, V. 22, No. 70, 1970, pp. 17-24.

Sonnenberg, A. M. C., and Al-Mahaidi, R., "Investigation of Dowel Shear in RC Beams Using Photogrammetry," Magazine of Concrete Research, V. 59, No. 9, 2007, pp. 621-626.

Sozen, M. A., Zwoyer, E. M., and Siess, C. P., "Investigation of Prestressed Reinforced Concrete for Highway Bridges. Part 1: Strength in Shear of Beams without Web Reinforcement," Engineering Experimental Station Bulletin No. 452, University of Illinois, 1959.

Swamy, R. N., and Andriopoulos, A. D., and Adepegba, D., "Arch action and bond in concrete shear failures," *ASCE Journal of Structural Engineering*, V. 96, No. 6, 1970, pp. 1069-1091.

Swamy, R. N., and Andriopoulos, A. D., "Contribution of Aggregate Interlock and Dowel Forces to the Shear Resistance of Reinforced Beams with Web Reinforcement," *ACI Structural Journal*, V. 42, No 6, 1974, pp. 129-168.

Tariq, M., and Newhook, J. P., "Shear testing of FRP reinforced concrete without transverse reinforcement," Annual Conference of the Canadian Society for Civil Engineering, Moncton, Canada, 2003, GCF-340-1-GCF340-10.

Taylor, H. P. J., "Shear Stresses in Reinforced Concrete Beams without Shear Reinforcement," Cement and Concrete Association, Technical Report TRA 407, Wexham Springs, United Kingdom, 1968, 23 pp.

Taylor, H. P. J., "Shear Strength of Large Beams," *Journal of the Structural Division*, V. 98. No. 11, 1972, pp. 2473-2489.

Thorenfeldt, E., and Drangshold, G., "Shear Capacity of Reinforced High-Strength Concrete Beams," *ACI Special Publication*, SP-121, 1990, pp. 129-154.

Tureyen, A.K., and Frosch, R.J. "Shear tests of FRP-reinforced concrete beams without stirrups," *ACI Structural Journal*, V. 99, No. 4, 2002, pp. 427-434.

Walraven, J., and Lehwalter, N., "Size Effects in Short Beams Loaded in Shear," ACI Structural Journal, V. 91, No. 5, 1994, pp. 585-593.

Xie, Y., Ahmad, S.H., Yu, T., Hino, S., and Chung, W., "Shear Ductility of Reinforced Concrete Beams of Normal and High-Strength Concrete," *ACI Structural Journal*, V. 91, No. 2, 1994, pp. 140-149.

Yost, J. R., Gross, S. P., and Dinehart, D. W., "Shear Strength of Normal Strength Concrete Beams Reinforced with Deformed GFRP Bars," *Journal of Composites for Construction*, V. 5, No. 4, 2001, pp. 268-275.

APÊNDICE A: BANCO DE DADOS

Autor	Viga	b_w	h	d	a / d	$ ho_l$	f'_c	D _{max}	f_y	$ au_{\it Lit}$
	_	(mm)	(mm)	(mm)		(%)	(MPa)	(mm)	(MPa)	(MPa)
Adabar & Collins	ST3	290	310	278	2.88	1.95	49.3	19	536	1.34
(1996)	ST1	360	310	278	2.88	1.57	52.5	19	536	1.27
	ST23	290	310	278	2.88	0.99	58.9	19	536	1.12
Abmad & Lua	C1	127	254	184	4.01	6.64	64.3	13	483	2.32
(1987)	C7	127	254	207	3.99	3.26	64.3	13	483	1.73
	A7	127	254	208	4.00	1.77	60.8	13	586	1.77
Angelakos (2001)	DB130	300	1000	925	2.92	1.01	32.0	10	550	0.67
Baron & Mark (1966)	1	203	152	127	4.60	1.55	30.6	19	429	1.49
Batson et al.	A2	102	152	127	4.80	3.1	34.7	19	276	1.45
(1972)	A1	102	152	127	4.80	3.1	34.7	19	276	1.48
	BK2.1	38	51	41	3.02	1.62	46.2	5	690	1.86
	BK4.3	38	203	165	3.00	1.62	46.2	5	690	1.32
Bažant & Kazemi (1991)	BK3.2	38	102	83	2.99	1.62	46.2	5	690	1.59
Razenn (1991)	BK2.2_2	38	51	41	3.02	1.65	46.8	5	690	1.93
	BK4.2	38	203	165	3.00	1.62	46.2	5	690	1.34
	SBB2.2	105	206	168	2.95	1.62	30.0	10	494	1.73
Bentz & Buckley	SBB1.2	105	103	84	2.95	1.62	33.0	10	494	2.10
(2005)	SBB2.3	106	206	168	2.95	1.62	30.0	10	494	1.67
	SBB2.1	106	206	168	2.95	1.6	30.0	10	494	1.62
	B6	240	650	600	3.00	0.63	24.7	30	434	0.79
Bhal (1967)	B4	240	1250	1200	3.00	1.26	25.2	30	434	0.64
	B2	240	650	600	3.00	1.26	29.6	30	434	0.83
Bower & Viest	IIA-8	152	356	292	3.65	1.59	18.4	25	307	0.82
(1960)	IIA-4b	152	356	292	3.13	1.59	22.9	25	323	0.96
	0A-2	305	561	466	4.74	2.27	23.7	19	555	1.25
Bresler &	0A-3	307	556	462	6.76	2.73	37.6	19	552	1.29
Scoluens (1903)	0A-1	310	556	461	3.80	1.81	22.6	19	555	1.17
Cederwall <i>et al.</i> (1974)	734-34	135	260	234	3.42	1.07	31.5	19	483	1.31
	6.5	23	51	42	3.00	1.7	46.9	2	414	2.69
	4.4a	60	127	106	3.00	1.72	52.2	5	414	1.51
	3.3b	100	203	177	3.00	1.74	40.1	10	414	1.31
	6.7	23	51	42	3.00	1.7	43.1	2	414	2.48
Chana (1981)	6.6	23	51	42	3.00	1.7	64.0	2	414	2.80
	D1	100	203	177	3.00	1.74	31.6	10	414	1.25
	4.1b	60	127	106	3.00	1.72	30.9	5	414	1.37
	5.1a	200	203	170	3.00	1.8	40.3	10	414	1.41
	5.1b	200	203	170	3.00	1.8	40.3	10	414	1.41

Tabela A.1 – Banco de dados para composição do modelo teórico.

Autor	Viga	b_{w}	h	d	a/d	ρ_l	f'_c	$D_{\rm max}$	f_{v}	$ au_{Iit}$
Autor	viga	(mm)	(mm)	(mm)	u / u	(%)	(MPa)	(mm)	(MPa)	(MPa)
	1C1	102	152	137	3.15	2.37	27.6	25	328	1.40
	1A1	102	152	137	3.89	2.89	27.6	25	328	1.42
Chang & Kesler	IIIB1	102	152	137	3.15	1.86	14.9	25	328	1.09
(1958)	IIB1	102	152	137	3.89	2.37	17.7	25	328	1.19
	IIIB2	102	152	137	3.15	1.86	14.9	25	328	1.11
	5-22a	102	152	137	3.53	2.89	31.2	25	328	1.60
Cladera (2005)	H75/1	200	400	359	3.01	2.24	68.9	12	483	1.39
	BH50	300	500	450	2.92	0.81	99.0	10	486	0.98
Collins &	BH25	300	250	225	2.95	0.89	99.0	10	437	1.26
Kuchma (1999)	SE50A-83	169	500	445	2.70	1.03	86.0	10	480	1.10
	SE100A/45	295	1000	920	2.50	1.03	50.0	10	480	0.84
	L-2	152	305	252	3.02	3.36	21.5	25	310	1.97
De cossio & Seiss (1960)	L-2R	152	305	252	3.02	3.36	21.5	25	310	1.95
56133 (1700)	A-13	152	305	254	4.00	3.33	22.1	25	393	1.21
	32-8E	321	102	83	4.00	1.87	23.2	12	418	1.23
	A12-6E	120	76	61	2.69	1.93	30.3	12	404	2.54
	A2.1-16.8A	21	203	168	2.68	2	34.6	12	410	1.33
	A2.1-16.8B	21	203	168	2.68	2	34.6	12	410	1.33
	C29.4-9.8A	294	127	99	2.67	1.95	14.9	12	372	1.25
	A4.25-8.5A	42	102	86	2.67	1.97	29.7	12	397	1.55
	32-8F	319	102	83	3.98	1.87	21.2	12	418	1.25
	A6-12C	60	152	120	2.68	1.94	29.7	12	390	1.44
$D_{\alpha} \cos(\alpha (1062))$	A6-12B	60	152	122	2.67	1.92	29.7	12	390	1.43
De cossio (1902)	A6-12A	60	152	121	2.67	1.94	29.7	12	390	1.46
	A12-6D	120	76	61	2.67	1.94	24.1	12	404	2.27
	32-8D	320	102	84	4.00	1.85	21.2	12	367	1.27
	A4.25-8.5C	42	102	86	2.67	1.97	29.7	12	397	1.61
	32-8C	319	102	82	3.98	1.91	23.2	12	367	1.33
	A4.25-8.5B	42	102	86	2.69	1.97	29.7	12	397	1.61
	A4.7-14.7A	46	178	147	2.67	2.08	28.3	12	436	1.42
	A12-12A	120	152	121	2.67	1.95	23.7	12	402	1.86
	A8.5-17C	86	203	170	2.67	1.95	33.9	12	390	1.44
El-Sayed <i>et al.</i> (2005)	SN-1.2	250	400	326	3.07	1.23	44.6	18	460	1.43
	F2	178	305	268	4.00	2.44	65.5	13	434	1.42
Elzanaty <i>et al.</i> (1986)	F10	178	305	267	4.00	3.21	65.5	13	434	1.66
(1200)	F9	178	305	268	4.00	1.63	79.3	13	434	1.33

Tabela A.1 – Banco de dados para composição do modelo teórico (Cont).

Autor	Vice	b_{w}	h	d	a / d	ρ_{l}	f'_{c}	D_{max}	f_{v}	$ au_{Iit}$
Autor	viga	(mm)	(mm)	(mm)	a / a	(%)	(MPa)	(mm)	(MPa)	(MPa)
	Н350-Н	400	350	313	2.50	2	58.6	10	477	1.51
Ghannoum	H220-I	400	220	190	2.50	1.2	58.6	10	433	1.39
(1998)	H485-I	400	485	440	2.50	1.2	58.6	10	385	1.12
	N485-H	400	485	440	2.50	2	34.2	20	385	1.22
	B91SC2-2- 62	155	237	196	3.57	2.23	61.8	18	443	2.29
	B90SB14- 2-8	158	235	194	3.61	2.21	86.2	18	630	2.50
	B90SB5-2- 33	156	232	191	3.66	2.28	32.8	18	651	1.88
Halloman (1004)	B90SB22- 2-8	158	234	193	3.63	2.22	84.6	18	630	2.48
Hallgreii (1994)	B91SD6-4- 58	150	249	196	3.57	4.1	58.3	18	494	2.81
	B90SB10- 2-3	157	234	193	3.63	2.2	31.1	18	651	1.77
	B90SB17- 2-4	157	232	191	3.66	2.26	44.9	18	630	1.97
	B90SB6-2- 33	156	235	194	3.61	2.24	32.8	18	651	1.77
Hamadi & Regan (1980)	G4	100	400	372	5.90	1.08	22.0	20	800	0.81
	SW1B-0A	914	225	184	3.24	1.24	48.3	19	633	1.20
	SW9-0B	914	227	190	3.14	0.6	48.5	19	603	0.90
Heger & McGrath (1982)	SW9M-0A	914	225	187	3.19	0.61	48.5	19	594	0.91
Medium (1962)	SW14-0A	914	227	191	3.13	0.93	49.0	19	673	1.13
	SW14-0B	914	226	186	3.21	0.96	49.0	19	673	1.15
Islam <i>et al</i> .	M100-S4	150	250	203	3.94	3.22	83.3	10	532	2.65
(1998)	M25-S0	150	250	207	3.86	2.02	26.6	10	350	1.53
	59	154	152	140	2.66	2.63	26.6	19	392	2.33
	3042	154	1219	1095	2.50	2.7	26.4	19	375	1.41
	211	153	305	270	3.02	2.73	35.2	19	381	1.38
	3047	155	1219	1095	8.00	2.69	26.7	19	376	0.87
	3046	155	1219	1097	6.99	2.7	26.7	19	360	0.91
	246	153	305	274	3.47	0.51	27.6	19	400	0.61
Kani et al. (1979)	52	152	152	140	3.89	2.67	24.8	19	392	1.36
	194	154	305	278	2.93	1.8	34.6	19	352	1.20
	27	152	305	271	2.50	1.87	29.8	19	396	1.25
	107	154	305	267	5.08	0.76	26.6	19	422	0.63
	124	154	305	271	5.00	1.8	15.4	19	345	0.77
	212	155	305	273	2.99	2.66	35.2	19	381	1.43
	805	152	305	272	2.51	2.76	35.7	19	424	1.56

Tabela A.1 – Banco de dados para composição do modelo teórico (Cont).

Autor	Viga	b_w	<i>h</i> (mm)	d (mm)	a / d	ρ_l	f'_{c} (MPa)	$D_{\rm max}$	f_{y}	$ au_{Lit}$
Kawano &	A2B	(1111)	570	500	3.00	136	27.3	20	(IVIF a) 400	(MF a)
Wantanabe (1997)	A3A	350	1050	950	3.00	1.22	20.7	20	400	0.65
	D915-1	300	1000	915	3.00	1.87	53.7	25	477	0.99
	P3.4-1	170	300	267	3.00	3.35	53.7	25	477	1.72
Kim & Park (1994)	P3.4-2	170	300	267	3.00	3.35	53.7	25	477	1.73
(1))+)	D142-2	170	170	142	3.00	1.87	53.7	25	477	1.63
	P4.6-1	170	300	255	3.00	4.68	53.7	25	477	2.07
Kim et al. (1999)	3CNB	127	229	191	2.99	1.65	37.7	13	461	1.21
	s4.2	300	200	152	3.75	2.21	110.9	16	517	1.98
Konig et al.	s4.1	300	200	153	3.73	1.34	110.9	16	660	1.62
(1997)	s1.1	300	200	153	3.73	1.34	90.1	16	660	1.53
	s3.3	300	800	746	3.53	0.83	94.4	16	487	0.86
	IV-21A2	152	305	238	3.84	5.01	19.9	25	400	2.11
	V-**-4EU	152	305	254	3.60	2.63	20.2	25	394	1.63
	IX-**-5CU	152	305	252	3.02	3.35	14.7	25	370	1.75
	IV-13A2	152	381	319	2.87	0.8	19.9	25	379	1.00
	IX-5CC	152	305	252	6.05	3.35	14.7	25	370	0.89
	VIII-6AAC	152	305	250	3.66	4.3	34.4	25	400	1.58
	V-**-3CU	152	305	256	2.97	1.99	20.5	25	379	1.53
	V-**-5EU	152	305	252	3.63	3.35	19.3	25	370	1.74
IZ C 1 1 0	V-**-4CU	152	305	254	3.00	2.63	20.6	25	394	1.72
Krefeld & Thurston (1966)	IV-20A2	152	305	238	3.84	4.52	21.0	25	400	1.40
Thurston (1900)	IX-**-3EU	152	305	256	3.57	1.99	15.2	25	379	1.28
	IV-19A2	152	305	240	3.81	3.53	20.6	25	370	1.27
	IX-**-3CU	152	305	256	2.97	1.99	12.2	25	379	1.26
	IX-6AC	152	305	250	4.88	4.3	12.4	25	400	1.08
	V-5AC	152	305	252	4.84	3.35	18.3	25	370	1.09
	IX-**-5CU	152	305	252	3.02	3.35	32.3	25	370	2.07
	V-**-5CU	152	305	252	3.02	3.35	20.4	25	370	1.80
	IX-6AAC	152	305	250	3.66	4.3	13.4	25	400	1.64
	V-6CC	152	305	250	6.10	4.3	20.6	25	400	1.17
Laupa et al.	S13	152	305	262	4.94	4.11	26.2	25	304	1.25
(1953)	T-12c	147	203	178	4.30	2.2	33.7	25	359	1.22

Tabela A.1 – Banco de dados para composição do modelo teórico (Cont).

Autor	Viga	b_{w}	h	d	a/d	$ ho_l$	f'_{c}	$D_{\rm max}$	f_y	$ au_{Lit}$
Autor	viga	(mm)	(mm)	(mm)	u / u	(%)	(MPa)	(mm)	(MPa)	(MPa)
	16 2	189	324	274	4.56	2.05	37.8	30	465	1.62
	P4	500	165	145	3.38	1.4	14.5	30	427	1.39
	P11	498	203	183	3.44	1.11	13.7	30	427	1.11
	C2	150	330	300	3.00	1.28	38.3	30	425	1.44
Leonhardt & Walther (1962)	15 2	189	323	273	3.66	2.06	38.3	30	465	1.67
wanner (1962)	P2	503	162	142	3.45	0.95	13.4	30	427	1.07
	P3	502	162	142	3.45	1.11	13.4	30	427	1.14
	EA2	190	320	270	2.78	1.78	22.2	30	490	1.45
	E6	190	320	270	2.78	2.47	27.6	30	426	1.78
Luch all (2006)	AW8	1169	591	507	3.65	1.69	39.4	10	467	1.33
Lubell (2006)	AX7	704	335	287	3.62	1.04	41.0	10	413	1.23
Mana (1096)	A2	150	225	200	2.80	1.34	24.2	20	463	1.50
Mansur (1986)	A3	150	225	200	3.60	1.34	24.2	20	463	1.28
Marti <i>et al.</i> (1977)	PS11	400	180	162	3.95	1.38	29.6	16	542	1.50
Mathey &	IIIa-18	203	457	403	3.78	2.54	25.2	25	505	0.99
Watstein (1963)	IIIa-17	203	457	403	3.78	2.54	29.2	25	505	1.08
	F1	100	180	150	3.00	2.65	127.5	19	367	2.29
	M1	100	260	225	3.50	2.55	124.5	19	403	1.93
	N1	100	260	225	4.00	2.55	124.5	19	403	1.84
Matsui <i>et al.</i> (1995)	M2	100	260	225	3.50	2.55	124.5	19	403	1.95
(1))))	E2	100	180	150	3.00	2.65	83.4	19	367	2.83
	A2	100	180	150	3.00	2.65	32.4	19	367	2.13
	F2	100	180	150	3.00	2.65	127.5	19	367	3.21
Mattock (1969)	3	152	305	254	3.00	1.03	46.9	19	400	1.42
	B-B6	152	305	268	3.41	1.89	15.8	25	483	0.86
	B-B2	152	305	268	3.41	1.89	16.7	25	483	0.89
Moody et al.	A-C4	178	305	274	2.92	0.82	6.8	25	483	0.53
(1954)	A-C2	178	305	272	2.94	0.83	6.1	25	483	0.52
	A-C3	178	305	273	2.93	0.8	6.9	25	483	0.54
	B-B16	152	305	268	3.41	1.89	16.3	25	483	0.95
Morrow & Viest (1957)	B113-B4	305	406	365	7.86	1.86	32.6	6	483	1.00
	NS4	200	250	250	3.00	3.18	50.5	19	343	1.65
Muruyama &	N1	200	250	250	2.50	1.55	47.1	19	343	1.94
Iwabuchi (1986)	NS3	200	250	250	3.00	3.18	49.1	19	343	1.73
	NP2	200	250	250	3.10	3.18	47.3	19	343	2.26
Niwa <i>et al.</i> (1987)	2	600	2100	2000	3.00	0.14	26.2	25	999	0.32

Tabela A.1 – Banco de dados para composição do modelo teórico (Cont).

Autor	Viga	b_{w}	h	d	a / d	$ ho_l$	f'_{c}	$D_{\rm max}$	f_y	$ au_{\it Lit}$
	0	(mm)	(mm)	(mm)		(%)	(MPa)	(mm)	(MPa)	(MPa)
Placas & Regan	R 1	152	305	272	3.36	0.98	26.2	19	621	1.09
(1971)	R7	152	305	272	3.36	1.46	28.1	19	621	1.31
Rahal <i>et al.</i> (2004)	B65-NTR	200	370	305	2.95	3.89	61.9	12	483	2.79
Deisserator 6	S-14	151	349	269	4.16	0.63	29.8	13	524	0.62
Kajagopalan & Ferguson (1968)	S-12	153	311	268	4.17	0.25	29.7	13	1779	0.60
	S-6	151	311	267	4.19	0.35	31.0	13	1779	0.68
	16R	800	100	83	5.42	1.54	31.2	20	670	1.75
	4	400	100	83	5.42	1.66	28.1	10	670	1.64
	23	1200	100	83	5.42	1.64	35.4	20	670	1.26
Kegan & Rezai- Iorabi (1988)	5	600	100	83	5.42	1.58	28.1	10	670	1.61
Jonabi (1900)	17R	1000	100	83	5.42	1.51	31.0	20	670	1.66
	2	600	100	83	5.42	1.58	37.8	10	670	1.71
	16	800	100	83	5.42	1.54	31.2	20	670	1.63
Remmel (1991)	s1_5	150	200	160	3.06	4.09	84.5	16	474	2.51
	Z	180	302	262	3.61	2.64	24.2	30	412	1.16
Ruesch & Haugli	Y	120	229	199	3.60	2.65	23.0	30	407	1.26
(1902)	Х	90	134	111	3.60	2.65	23.0	30	481	1.46
	AT-3-C	706	338	305	3.41	0.93	37.1	10	448	1.21
Sherwood <i>et al.</i> (2006)	AT-3-B	701	338	305	3.41	0.93	37.8	10	448	1.19
(2000)	AT-3-D	706	338	307	3.38	0.93	37.1	10	448	1.15
Sherwood <i>et al.</i> (2007)	L-10N2	300	1510	1400	2.89	0.83	40.3	10	452	0.58
Shin et al. (1999)	MHB2.5-0	125	250	215	2.50	3.77	52.0	13	414	2.10
Smith (1970)	12/0	150	230	200	4.58	2.01	36.2	19	500	1.54
Sozen <i>et al.</i> (1959)	B.32.31	79	305	259	3.53	0.55	18.8	38	1434	0.83
Swomy (1070)	8	102	152	127	4.50	1.64	26.5	19	483	1.49
Swamy (1970)	6	102	152	127	3.50	1.64	26.5	19	483	1.60
	R-S007Nb	160	400	346	2.75	0.72	37.3	20	483	1.14
Tariq & Newbook (2003)	R-S015N2	160	400	325	3.54	1.54	34.1	20	483	1.36
NewHOOK (2003)	R-S015N1	160	400	325	3.54	1.54	34.1	20	483	1.34
T 1 (10.00)	1A	203	406	370	3.02	1.03	28.9	10	350	0.82
1 aylor (1968)	2B	203	406	370	3.02	1.55	33.2	10	350	1.34
	C1	100	250	233	3.00	1.35	22.7	19	420	0.97
Taylor (1972)	D2	60	150	139	3.02	1.35	28.4	2	420	1.45
	B1	200	500	465	3.01	1.35	24.2	38	420	1.12

Tabela A.1 – Banco de dados para composição do modelo teórico (Cont).

Autor	Viga	b _w (mm)	<i>h</i> (mm)	d (mm)	a / d	ρ _l (%)	f' _c (MPa)	D _{max} (mm)	f _y (MPa)	T _{Lit} (MPa)
	B43	150	250	207	4.00	3.24	86.4	16	500	2.78
	B14	153	253	207	3.00	3.24	54.0	16	500	2.61
Thorenfeldt &	B51	150	250	221	3.00	1.82	97.7	16	500	1.70
Drangshold	B61	300	500	442	3.00	1.82	77.8	16	500	1.36
(1990)	B61R	300	500	442	3.00	1.82	77.8	16	500	1.36
	B23	150	250	207	4.00	3.24	77.8	16	500	2.51
	B13	152	252	207	4.00	3.24	54.0	16	500	2.24
Tureyen & Frosch (2002)	V-D-2	457	427	360	3.39	0.36	43.7	19	745	0.82
Walraven & Lehwalter (1994)	A1	200	150	125	3.00	0.83	22.9	16	440	1.26
Xie et al. (1994)	NNN-3	127	254	216	3.00	2.07	39.7	19	421	1.34
Yost et al. (2001)	1Steelb	229	286	227	4.03	1.54	36.3	25	600	1.08

Tabela A.1 – Banco de dados para composição do modelo teórico (Cont).

APÊNCICE B: BANCO DE DADOS

Autor	Viga	b_w (mm)	h (mm)	d (mm)	a / d	ρ_l (%)	f' _c (MPa)	$D_{\rm max}$ (mm)	f_y (MPa)	$ au_{Lit}$ (MPa)
	A8	127	254	208	3.00	1.77	60.8	13	586	1.85
	A3	127	254	203	2.70	3.93	60.8	13	586	2.67
	A1	127	254	203	4.00	3.93	60.8	13	586	2.24
Ahmad & Lue	C3	127	254	184	2.70	6.64	64.3	13	483	2.95
(1987)	C2	127	254	184	3.00	6.64	64.3	13	483	3.24
	B8	127	254	208	3.00	2.25	67.0	13	586	1.77
	B7	127	254	208	4.00	2.25	67.0	13	586	1.68
	B2	127	254	202	3.00	5.04	67.0	13	586	2.69
	DB120	300	1000	925	2.92	1.01	21.0	10	550	0.65
Angelakos (2001)	DB230	300	1000	890	3.03	2.10	32.0	10	550	0.96
	DB0.530	300	1000	925	2.92	0.50	32.0	10	550	0.59
	9	1000	544	500	5.50	0.63	19.9	30	535	0.52
	10	1000	544	500	5.50	0.63	20.0	30	535	0.52
	11	1000	539	500	3.65	0.46	24.6	30	535	0.53
	2	1000	281	250	3.68	0.64	26.9	30	554	0.87
Aster & Koch (1974)	3	1000	289	250	3.68	0.91	27.3	30	535	0.89
	12	1000	540	500	3.65	0.65	27.3	30	535	0.66
	17	1000	794	750	3.67	0.42	28.7	30	535	0.48
	16	1000	794	750	3.67	0.42	30.4	30	536	0.54
	8	1000	544	500	5.50	0.63	31.1	30	535	0.57
Baron & Mark	4	203	152	127	4.60	1.55	27.0	19	429	1.17
(1966)	2	203	152	127	4.60	1.55	30.6	19	429	1.35
Batchelor & Kwum (1981)	4-C-1	152	248	226	3.04	0.17	46.6	19	1167	0.58
Batson <i>et al.</i> (1972)	A3	102	152	127	4.80	3.10	34.7	19	276	1.60
	BK3.1	38	102	83	2.99	1.62	46.2	5	690	1.71
	BK2.3	38	51	41	3.02	1.62	46.2	5	690	2.05
	BK3.3_2	38	102	83	2.99	1.65	46.8	5	690	1.65
	BK2.3_2	38	51	41	3.02	1.65	46.8	5	690	1.99
Bažant & Kazemi	BK2.1_2	38	51	41	3.02	1.65	46.8	5	690	2.05
(1991)	BK4.1_2	38	203	165	3.00	1.65	46.8	5	690	1.45
	BK3.1_2	38	102	83	2.99	1.65	46.8	5	690	1.74
	BK3.2_2	38	102	83	2.99	1.65	46.8	5	690	1.78
	BK4.3_2	38	203	165	3.00	1.65	46.8	5	690	1.61
	BK4.2_2	38	203	165	3.00	1.65	46.8	5	690	1.56

Tabela B.1 – Banco de dados para validação do modelo teórico.

Autor	Viga	b_{w}	h	d	a/d	$ ho_l$	f'_c	D _{max}	f_y	$ au_{{\scriptscriptstyle Lit}}$
	8"	(mm)	(mm)	(mm)	-	(%)	(MPa)	(mm)	(MPa)	(MPa)
	SBB1.1	104	103	84	2.95	1.63	33.0	10	494	1.66
D	SBB1.3	104	103	84	2.95	1.63	33.0	10	494	1.72
(2005)	SBB3.3	101	378	333	2.97	1.61	34.0	10	490	1.28
()	SBB3.1	105	378	333	2.97	1.55	34.0	10	490	1.21
	SBB3.2	101	378	333	2.97	1.61	34.0	10	490	1.21
	B 1	240	350	297	3.03	1.26	23.2	30	434	0.99
	B5	240	650	600	3.00	0.63	26.6	30	434	0.74
Bhal (1967)	B7	240	950	900	3.00	0.63	27.2	30	434	0.65
	B3	240	950	900	3.00	1.26	27.5	30	434	0.77
	B8	240	950	900	3.00	0.63	27.7	30	430	0.59
Bower & Viest	IIA-9	152	356	292	4.17	1.59	21.2	25	328	0.95
(1960)	IIA-5	152	356	292	4.70	1.59	23.6	25	323	0.92
G (2001)	SB2012/0	300	2000	1845	2.93	1.52	27.5	10	550	0.74
Cao (2001)	SB2003/0	300	2000	1925	2.81	0.36	30.8	10	470	0.39
	4.2b	60	127	106	3.00	1.72	30.9	5	414	1.53
	4.1a	60	127	106	3.00	1.72	30.9	5	414	1.54
	D2	100	203	177	3.00	1.74	32.4	10	414	1.32
	3.1a	100	203	177	3.00	1.74	34.5	10	414	1.34
	3.1b	100	203	177	3.00	1.74	34.5	10	414	1.35
	6.1	23	51	42	3.00	1.70	35.8	2	414	2.17
	3.2a	100	203	177	3.00	1.74	36.8	10	414	1.38
	3.2b	100	203	177	3.00	1.74	36.8	10	414	1.44
	6.2	23	51	42	3.00	1.70	38.0	2	414	1.97
Chana (1981)	6.3	23	51	42	3.00	1.70	39.1	2	414	2.17
	5.2b	200	203	170	3.00	1.80	39.6	10	414	1.65
	5.2a	200	203	170	3.00	1.80	39.6	10	414	1.62
	3.3a	100	203	177	3.00	1.74	40.1	10	414	1.50
	2.2a	203	406	356	3.00	1.69	41.6	10	414	1.21
	2.2b	203	406	356	3.00	1.69	41.6	10	414	1.31
	6.8	23	51	42	3.00	1.70	42.6	2	414	2.28
	6.9	23	51	42	3.00	1.70	45.0	2	414	2.38
	2.3a	203	406	356	3.00	1.69	45.2	20	414	1.38
	2.3b	203	406	356	3.00	1.69	45.2	20	414	1.33

Tabela B.1 – Banco de dados para validação do modelo teórico (Cont).

Autor	Viga	b_{w}	h	d	a / d	$ ho_l$	f'_c	$D_{\rm max}$	f_y	$ au_{Lit}$
		(mm)	(mm)	(mm)		(%)	(MPa)	(mm)	(MPa)	(MPa)
	2.1a	203	406	356	3.00	1.69	49.3	20	414	1.33
	2.1b	203	406	356	3.00	1.69	49.3	20	414	1.34
Chana (1981)	4.4b	60	127	106	3.00	1.72	52.2	5	414	1.65
(Cont.)	4.3b	60	127	106	3.00	1.72	52.2	5	414	1.95
	4.3a	60	127	106	3.00	1.72	52.2	5	414	1.84
	6.4	23	51	42	3.00	1.70	60.0	2	414	2.17
	IIIA1	102	152	137	3.89	2.37	14.9	25	328	1.22
	IIA1	102	152	137	3.15	1.86	17.7	25	328	1.22
	IIA2	102	152	137	3.15	1.86	17.7	25	328	1.24
	5-22b	102	152	137	3.53	2.89	31.2	25	328	1.85
	4-22b	102	152	137	3.53	1.86	31.7	25	328	1.67
Chang & Kesler	4-22a	102	152	137	3.53	1.86	31.9	25	328	1.53
(1958)	5-23b	102	152	137	3.53	2.89	32.1	25	328	1.67
	5-23a	102	152	137	3.53	2.89	32.1	25	328	1.75
	5-21b	102	152	137	3.53	2.89	32.2	25	328	1.97
	4-23b	102	152	137	3.53	1.86	32.2	25	328	1.61
	4-23a	102	152	137	3.53	1.86	32.2	25	328	1.55
	4-21b	102	152	137	3.53	1.86	38.6	25	328	1.76
	H50/1	200	400	359	3.01	2.24	49.9	12	483	1.39
Cladera (2005)	H60/1	200	400	359	3.01	2.24	60.8	12	483	1.51
	H100/1	200	400	359	3.01	2.24	87.0	12	483	1.64
	BN12.5	300	125	110	2.96	0.91	37.0	10	458	1.22
	BN50	300	500	450	2.92	0.81	37.0	10	486	0.97
	BN100	300	1000	925	2.88	0.76	37.0	10	550	0.69
	BN25	300	250	225	2.95	0.89	37.0	10	437	1.08
	B100R	300	1000	925	2.92	1.01	36.0	10	550	0.90
Collins & Kachma (1999)	B100	300	1000	925	2.92	1.01	36.0	10	550	0.81
Kachina (1999)	B100L	300	1000	925	2.92	1.01	39.0	10	550	0.80
	B100L-R	300	1000	925	2.92	1.01	39.0	10	550	0.85
	SE100A/45R	295	1000	920	2.50	1.03	50.0	10	480	0.98
	SE50A-45R	169	500	445	2.70	1.03	53.0	10	480	1.21
	SE50A-45	169	500	445	2.70	1.03	53.0	10	480	1.03

Tabela B.1 – Banco de dados para validação do modelo teórico (Cont).

Autor	Vige	b_w	h	d	a/d	$ ho_l$	f'_c	$D_{\rm max}$	f_y	$ au_{Lit}$
Autor	v iga	(mm)	(mm)	(mm)	u / u	(%)	(MPa)	(mm)	(MPa)	(MPa)
	A-3	152	305	254	4.00	0.98	19.4	25	42	0.89
	A-15	152	305	254	6.00	3.33	25.0	25	332	1.28
	L-4	152	305	252	5.04	3.36	25.8	25	303	1.34
	A-12	152	305	254	3.00	3.33	26.1	25	314	1.53
De cossio &	A-4	152	305	254	5.00	0.98	26.8	25	459	0.91
Seiss (1960)	A-14	152	305	254	5.00	3.33	27.5	25	364	1.42
	L-5	152	305	252	6.05	3.36	27.9	25	331	1.33
	L-3	152	305	252	4.03	3.36	28.0	25	310	1.39
	L-3R	152	305	252	4.03	3.36	28.0	25	310	1.62
	A-2	152	305	254	3.00	0.98	31.5	25	469	1.08
	C29.4-9.8B	294	127	99	2.67	1.95	18.0	12	372	1.49
	B29.4-9.8B	294	127	98	4.00	1.97	23.2	12	378	1.59
	32-8B	317	102	81	4.01	1.85	23.7	12	383	1.48
	A10.4- 13.9B	103	178	140	2.67	1.96	23.9	12	440	1.65
	A10.4- 13.9A	103	178	139	2.68	1.97	23.9	12	440	1.50
	B29.4-9.8A	294	127	98	4.00	1.97	25.6	12	378	1.45
	B12-6A	120	76	62	2.66	2.88	26.0	12	434	2.20
	B12-6B	120	76	63	2.67	2.84	26.0	12	434	2.37
	A14.7-9.8B	146	127	99	2.66	1.97	26.5	12	450	1.78
	48-8D	479	102	84	4.00	1.94	26.6	12	383	1.62
	C32-8A	319	102	80	4.00	1.95	26.6	12	394	1.61
	C32-8B	319	102	80	3.98	1.95	26.6	12	394	1.65
De cossio	B32-8A	318	102	80	3.98	2.81	26.8	12	403	1.93
(1962)	B32-8B	318	102	80	4.00	2.80	26.8	12	432	2.04
	A29.4-9.8A	293	127	99	2.67	1.96	27.2	12	426	1.73
	A29.4-9.8B	293	127	99	2.67	1.96	27.2	12	426	1.81
	48-8B	505	102	82	3.98	1.98	27.8	12	399	1.58
	48-8A	479	102	81	4.00	2.01	27.8	12	410	1.60
	A4.7-14.7B	46	178	147	2.67	2.08	28.3	12	436	1.45
	64-8C	640	102	82	4.00	1.90	28.5	12	383	1.62
	64-8A	640	102	82	3.99	1.90	28.5	12	397	1.66
	B3-12A	29	152	120	4.00	2.00	29.0	12	394	1.38
	64-8B	636	102	81	3.98	1.94	29.2	12	440	1.66
	A12-12B	120	152	122	2.67	1.96	29.2	12	402	1.78
	A12-6C	122	76	62	2.66	1.90	30.0	12	392	2.08
	A12-6B	120	76	62	2.66	1.92	30.0	12	392	2.08
	A12-12D	120	152	120	2.67	1.97	31.0	12	402	1.65

Tabela B.1 – Banco de dados para validação do modelo teórico (Cont).

Autor	Vigo	b_{w}	h	d	a/d	$ ho_l$	f'_c	$D_{\rm max}$	f_y	$ au_{Lit}$
Autor	viga	(mm)	(mm)	(mm)	u / u	(%)	(MPa)	(mm)	(MPa)	(MPa)
	A12-12C	120	152	121	2.67	1.95	31.0	12	402	1.64
.	A50-25B	502	305	252	2.67	1.85	34.1	12	394	1.35
De cossio (1962) (Cont.)	A50-25A	501	305	253	2.67	1.81	34.5	12	399	1.49
(1902) (Cont.)	A8.5-17B	85	203	170	2.67	1.96	35.0	12	392	1.65
	A8.5-17A	87	203	171	2.67	1.92	35.0	12	392	1.58
	F12	178	305	268	4.00	2.44	20.7	13	434	1.17
	F11	178	305	270	4.00	1.19	20.7	13	434	0.94
Elzanaty <i>et al</i> .	F7	178	305	268	4.00	0.60	20.7	13	434	0.71
(1986)	F14	178	305	268	4.00	2.44	40.0	13	434	1.38
	F8	178	305	273	4.00	0.93	40.0	13	434	0.95
	F1	178	305	270	4.00	1.19	65.5	13	434	1.22
	N960-I	400	960	889	2.50	1.20	34.2	20	385	1.01
	N960-H	400	960	889	2.50	2.00	34.2	20	385	1.07
	N220-H	400	220	190	2.50	2.00	34.2	20	433	1.61
	N350-H	400	350	313	2.50	2.00	34.2	20	477	1.42
Ghannoum (1998)	N350-I	400	350	313	2.50	1.20	34.2	20	477	1.26
(1990)	N485-I	400	485	440	2.50	1.20	34.2	20	385	1.06
	N220-I	400	220	190	2.50	1.20	34.2	20	433	1.36
	H350-I	400	350	313	2.50	1.20	58.6	10	477	1.25
	Н220-Н	400	220	190	2.50	2.00	58.6	10	433	1.78
Guadagnini <i>et</i> <i>al.</i> (2006)	SB40	150	250	223	3.36	1.35	43.4	20	500	1.35
Hallgren	B90SB9-2- 31	156	233	192	3.65	2.26	31.1	18	651	1.64
(1994)	B91SD4-4- 66	155	248	195	3.59	3.99	65.7	18	494	2.42
TT 11	B7	337	240	208	2.64	0.57	85.0	18	630	1.26
(1996)	B5	283	240	211	2.61	1.05	91.3	18	604	1.73
(1))0)	B3	262	240	208	2.64	0.74	92.4	18	632	1.39
Hamadi & Regan (1980)	G1	100	400	370	3.39	1.70	30.3	20	400	1.20
$\mathbf{U}_{\text{option}}$ (1061)	8A4	152	305	267	4.95	1.25	20.9	19	611	0.83
Hanson (1901)	8B2	152	305	267	4.95	2.53	30.8	19	326	1.29
Heger &	SW1B-0B	914	225	180	3.32	1.27	48.3	19	633	1.35
McGrath	SW9-0A	914	224	184	3.24	0.62	48.5	19	603	1.00
(1982)	SW9M-0B	914	226	185	3.23	0.62	48.5	19	594	1.03
Higgins <i>et al.</i> (2004)	37T	356	1219	1151	2.91	0.74	31.8	19	478	0.59

Tabela B.1 – Banco de dados para validação do modelo teórico (Cont).

Autor	Viga	b_{w}	h	d	a/d	$ ho_l$	f'_c	$D_{\rm max}$	f_y	$ au_{Lit}$
Autor	viga	(mm)	(mm)	(mm)	u / u	(%)	(MPa)	(mm)	(MPa)	(MPa)
	M40-S0	150	250	205	3.90	3.19	34.4	10	320	1.79
	M60-S0	150	250	207	3.86	2.02	50.8	10	554	1.47
Islam <i>et al.</i> (1998)	M60-S4	150	250	207	3.86	2.02	50.8	10	554	1.67
(1770)	M80-S0	150	250	203	3.94	3.22	72.2	10	532	1.90
_	M100-S0	150	250	203	3.94	3.22	83.3	10	532	2.13
	123	155	305	271	4.00	1.79	15.4	19	346	0.90
	126	155	305	272	2.99	1.78	16.3	19	346	1.01
	143	154	305	274	3.96	0.74	17.7	19	428	0.72
	130	153	305	276	5.32	1.79	18.0	19	346	0.95
	132	154	305	271	2.51	1.81	18.6	19	417	1.19
	153	152	305	273	2.99	0.76	19.7	19	384	0.79
	152	149	305	270	3.02	0.79	19.7	19	384	0.81
	133	154	305	273	4.98	1.81	19.9	19	508	0.92
	268	153	305	275	2.97	0.49	20.1	19	396	0.65
	121	152	305	272	3.00	1.85	20.3	19	330	1.19
	267	153	305	269	3.53	0.52	20.7	19	400	0.60
	29	152	305	271	4.51	1.87	24.6	19	350	1.04
	47	151	152	132	5.14	2.84	24.8	19	392	1.41
	55	150	152	135	3.01	2.80	25.1	19	392	1.61
Kani <i>et al</i> .	30	152	305	271	4.51	1.87	25.2	19	350	1.12
(1979)	96	153	305	275	3.95	2.76	25.3	19	335	1.34
	104	154	305	269	3.99	0.76	25.3	19	423	0.81
	64	156	610	541	8.02	2.75	25.7	19	352	0.94
	35	155	305	269	3.54	1.82	26.1	19	491	1.08
	36	153	305	273	3.49	1.82	26.1	19	491	1.24
	79	153	610	556	6.84	2.72	26.1	19	381	0.98
	63	154	610	543	4.00	2.77	26.2	19	352	1.11
	116	152	305	271	3.01	0.78	26.4	19	384	0.95
	66	156	610	541	6.02	2.75	26.4	19	352	1.08
	57	153	152	139	5.37	2.61	26.4	19	375	1.47
	60	155	152	139	2.93	2.64	26.8	19	392	1.82
	3043	154	1219	1092	3.00	2.71	27.0	19	376	0.98
	271	611	305	269	6.06	2.75	27.0	19	377	1.32
	272	611	305	271	5.01	2.73	27.0	19	377	1.38
	40	152	152	140	5.34	2.59	27.1	19	388	1.50

Tabela B.1 – Banco de dados para validação do modelo teórico (Cont).

Autor	Viga	b_w	h	d	a/d	$ ho_l$	f'_c	D _{max}	f_y	$ au_{Lit}$
Autor	viga	(mm)	(mm)	(mm)	<i>u</i> / <i>u</i>	(%)	(MPa)	(mm)	(MPa)	(MPa)
	274	612	305	270	3.02	2.73	27.2	19	377	1.51
	74	152	610	523	3.12	2.84	27.2	19	366	1.35
	97	152	305	276	2.95	2.68	27.2	19	366	1.49
	75	152	610	524	3.11	2.84	27.3	19	367	1.35
	3061	154	1202	1091	3.10	0.80	27.4	19	345	0.58
	84	151	305	271	4.00	2.84	27.4	19	342	1.35
	83	156	305	271	3.00	2.74	27.4	19	343	1.54
	91	154	305	269	6.05	2.70	27.4	19	364	1.23
	71	155	610	544	2.99	2.41	27.4	19	373	1.21
	81	153	305	274	5.94	2.76	27.5	19	343	1.22
	43	151	152	137	5.93	2.73	28.0	19	392	1.41
	3045	155	1219	1092	5.00	2.70	28.3	19	381	0.90
	28	152	305	271	2.50	1.87	29.2	19	396	1.32
	103	155	305	274	2.97	0.74	29.4	19	423	0.91
	3044	152	1219	1097	3.98	2.72	29.5	19	376	0.95
··· ·	93	155	305	273	6.46	2.66	30.3	19	372	1.27
Kanı $et al.$ (1979) (Cont.)	76	152	610	518	2.62	2.87	30.8	19	372	1.46
(1979) (Cont.)	179	153	305	264	2.57	0.53	32.3	19	400	0.83
	164	156	305	271	4.00	0.73	33.8	19	412	0.85
	202	154	305	273	5.96	2.68	33.9	19	377	1.19
	182	155	305	268	5.06	1.80	33.9	19	386	1.17
	191	154	305	275	2.96	1.80	34.0	19	497	1.25
	195	153	305	275	3.95	1.82	34.6	19	352	1.12
	207	153	305	275	6.91	2.66	34.6	19	370	1.15
	186	155	305	272	3.99	1.78	35.1	19	394	1.31
	166'	154	305	274	2.97	0.76	35.4	19	379	0.91
	166	152	305	271	3.01	0.78	35.4	19	377	0.98
	208	157	305	275	4.44	2.68	35.7	19	379	1.39
	196	154	305	269	5.05	1.85	36.2	19	380	1.24
	213	154	305	276	4.43	2.66	36.7	19	381	1.35
	802	152	305	276	5.91	2.68	34.5	19	414	1.21
	801	152	305	272	4.00	2.69	34.8	19	439	1.31
	804	153	305	275	6.92	2.69	37.3	19	421	1.15
	A3B	350	1050	950	3.00	1.22	20.6	20	400	0.71
Kawano & Wantanaba	A1B	105	330	300	3.00	1.26	24.8	20	400	0.94
Wantanabe (1997)	A1A	105	330	300	3.00	1.26	24.8	20	400	1.06
	A2A	176	570	500	3.00	1.36	27.3	20	400	0.94

Tabela B.1 – Banco de dados para validação do modelo teórico (Cont).

Autor Viga		b_{w}	h	d	a / d	ρ_l	f'_{c}	$D_{\rm max}$	f_y	$ au_{Lit}$
Autor	viga	(mm)	(mm)	(mm)	u / u	(%)	(MPa)	(mm)	(MPa)	(MPa)
	D142-1	170	170	142	3.00	1.87	53.7	25	477	1.70
	A6.0-2	170	300	270	6.00	1.87	53.7	25	477	1.33
	A4.5-1	170	300	270	4.50	1.87	53.7	25	477	1.45
	P1.0-1	170	300	272	3.00	1.01	53.7	25	477	1.26
	D915-2	300	1000	915	3.00	1.87	53.7	25	477	1.21
	P4.6-2	170	300	255	3.00	4.68	53.7	25	477	2.20
$K_{1}m \& Park$ (1994)	D550-1	300	620	550	3.00	1.88	53.7	25	477	1.37
(1994)	A6.0-1	170	300	270	6.00	1.87	53.7	25	477	1.29
	P1.0-2	170	300	272	3.00	1.01	53.7	25	477	1.22
	A4.5-2	170	300	270	4.50	1.87	53.7	25	477	1.39
	D550-2	300	620	550	3.00	1.88	53.7	25	477	1.30
	CTL-2	170	300	270	3.00	1.87	53.7	25	477	1.56
	CTL-1	170	300	270	3.00	1.87	53.7	25	477	1.55
Kim <i>et al.</i> (1999)	4CNB	127	229	191	3.99	1.65	34.9	13	461	1.25
	s2.2	300	400	348	3.53	1.88	91.3	16	469	1.79
	s3.2	300	800	718	3.56	1.72	93.7	16	487	1.20
Konig et al.	s2.3	300	400	348	3.53	0.94	93.7	16	469	1.18
(1997)	s2.4	300	400	328	3.75	3.76	94.1	16	487	2.34
	s3.4	300	800	690	3.81	3.57	94.1	16	487	1.83
	s4.3	300	200	146	3.90	4.22	110.9	16	487	2.79
	IX-**-5GU	152	305	252	4.23	3.35	11.2	25	370	1.11
	IX-3CC	152	305	256	5.95	1.99	12.2	25	379	0.80
	IX-3AAC	152	305	256	3.57	1.99	12.6	25	379	1.04
	IX-**-6EU	152	305	250	3.66	4.30	12.8	25	400	1.41
	IX-4AAC	152	305	254	3.60	2.63	12.9	25	394	1.11
	IX-4AC	152	305	254	4.80	2.63	12.9	25	394	1.04
Krefeld &	IX-**-3GU	152	305	256	4.17	1.99	13.5	25	379	1.08
Thurston	IX-3AC	152	305	256	4.76	1.99	13.7	25	379	0.95
(1966)	IX-**-6CU	152	305	250	3.05	4.30	13.7	25	400	1.57
	IX-**-4EU	152	305	254	3.60	2.63	14.3	25	394	1.12
	IX-**-5EU	152	305	252	3.63	3.35	15.1	25	370	1.44
	IX-5AC	152	305	252	4.84	3.35	15.4	25	370	1.14
	IX-5AAC	152	305	252	3.63	3.35	15.4	25	370	1.31
	X-*-C	203	533	483	3.16	1.56	16.8	25	394	0.86
	III-18A2	152	381	316	2.90	2.68	19.3	25	370	1.32

Tabela B.1 – Banco de dados para validação do modelo teórico (Cont).

Autor	Viga	b_w	h	d	a/d	$ ho_l$	f'_c	$D_{\rm max}$	f_y	$ au_{Lit}$
Autor	viga	(mm)	(mm)	(mm)	u / u	(%)	(MPa)	(mm)	(MPa)	(MPa)
	III-18B2	152	381	316	2.90	2.68	19.9	25	370	1.50
	VII-6C	152	305	252	3.63	3.35	20.1	25	370	1.34
	IV-15A2	152	381	316	2.90	1.34	20.1	25	370	0.95
	V-**-6EU	152	305	250	3.66	4.30	20.1	25	400	1.56
	V-5CC	152	305	252	6.05	3.35	20.3	25	370	1.16
	V-3CC	152	305	256	5.95	1.99	20.5	25	379	0.91
	V-4CC	152	305	254	6.00	2.63	20.6	25	394	1.04
	V-**-6CU	152	305	250	3.05	4.30	20.6	25	400	1.71
	IV-15B2	152	381	316	2.90	1.34	20.7	25	370	1.08
	IV-14A2	152	305	243	3.76	1.05	20.7	25	379	0.95
	V-**-2CU	152	305	254	3.00	1.32	20.8	25	394	1.17
	V-3AC	152	305	256	4.76	1.99	20.8	25	379	1.13
	V-4GC	152	305	254	8.40	2.63	21.0	25	394	0.96
	V-4EC	152	305	254	7.20	2.63	21.2	25	394	1.08
	V-**-5GU	152	305	252	4.23	3.35	21.3	25	370	1.51
Krefeld &	V-5GC	152	305	252	8.46	3.35	21.9	25	370	1.09
(1966) (Cont.)	IV-17A2	152	305	243	3.76	2.09	22.0	25	379	1.19
	III-18D2	152	381	316	2.90	2.68	22.1	25	370	1.25
	V-**-4JU	152	305	254	4.80	2.63	22.2	25	394	1.32
	IV-16A2	152	305	240	3.81	1.77	22.2	25	370	1.15
	III-18C2	152	381	316	2.90	2.68	22.6	25	370	1.53
	V-6AC	152	305	250	4.88	4.30	22.8	25	400	1.41
	V-2AC	152	305	254	4.80	1.32	23.0	25	394	0.98
	VIII-4AAC	152	305	254	3.60	2.63	29.2	25	394	1.50
	II-12A2	152	305	238	3.84	4.50	30.1	25	400	1.77
	II-11A2	152	381	314	2.91	3.41	30.2	25	400	1.54
	VIII-4AC	152	305	254	4.80	2.63	30.5	25	394	1.39
	VIII-5AAC	152	305	252	3.63	3.35	32.8	25	370	1.49
	VIII-5AC	152	305	252	4.84	3.35	32.8	25	370	1.42
	VIII-6AC	152	305	250	4.88	4.30	34.1	25	400	1.56
	VIII-3AAC	152	305	256	3.57	1.99	34.6	25	379	1.43
	s-I-*-OCa	152	305	254	6.00	2.63	35.7	25	394	1.26

Tabela B.1 – Banco de dados para validação do modelo teórico (Cont).

Autor	Viga	b_{w}	h	d	a/d	$ ho_l$	f'_c	D _{max}	f_y	$ au_{\it Lit}$
	, igu	(mm)	(mm)	(mm)		(%)	(MPa)	(mm)	(MPa)	(MPa)
	XI-*-PCa	152	305	250	7.31	4.30	36.3	25	400	1.41
	XI-*-PCb	152	305	250	7.31	4.30	36.3	25	400	1.41
Krefeld &	VIII-5CC	152	305	252	6.05	3.35	37.4	25	370	1.50
Thurston	VIII-5EC	152	305	252	7.25	3.35	37.4	25	370	1.39
(1966) (Cont.)	VIII-4CC	152	305	254	6.00	2.63	38.4	25	394	1.36
	VIII-6CC	152	305	250	6.10	4.30	38.4	25	400	1.66
	s-I-*-OCb	152	305	254	6.00	2.63	39.0	25	394	1.36
	B4JL20-S	102	178	152	5.00	1.38	40.6	10	518	1.26
Kulkarni & Shah (1998)	B3NO15-S	102	178	152	4.00	1.38	41.6	10	518	1.46
Shan (1990)	B3NO30-5	102	178	152	3.50	1.38	43.6	10	518	1.56
	T-6b	102	203	178	4.30	1.40	21.6	25	331	0.95
	T-5a	102	203	178	4.30	2.19	23.9	25	317	1.22
	T-5b	102	203	178	4.30	2.19	23.9	25	317	1.25
	T-5c	102	203	178	4.30	2.19	23.9	25	317	1.27
	S2	152	305	269	4.81	2.08	26.9	25	284	1.04
Laupa <i>et al</i> .	T2-Mb	152	305	269	3.50	1.39	27.7	25	331	1.09
(1955)	T2-Ma	152	305	269	3.40	1.39	29.8	25	331	1.03
	S 4	152	305	263	4.92	3.21	30.8	25	309	1.39
	S 3	152	305	265	4.89	2.52	32.3	25	410	1.32
	T-12b	147	203	178	4.30	2.20	33.7	25	359	1.29
	T-12a	147	203	178	4.30	2.20	33.7	25	359	1.36
	P10	503	122	102	3.43	1.10	12.4	30	427	1.16
	P5	503	165	145	3.38	1.86	13.4	30	427	1.38
Leonhardt & Walther (1962)	EA1	190	320	270	2.78	1.82	22.2	30	439	1.14
	P8	502	168	148	3.31	0.91	24.9	30	427	1.18
	P9	500	166	146	3.36	1.86	24.9	30	427	1.45
	D2/2	100	160	140	3.00	1.62	31.3	15	427	1.66

Tabela B.1 – Banco de dados para validação do modelo teórico (Cont).

Autor	Vice	b_{w}	h	d	a/d	ρ_l	f'_c	$D_{\rm max}$	f_{y}	$ au_{Iit}$
Autor	viga	(mm)	(mm)	(mm)	u / u	(%)	(MPa)	(mm)	(MPa)	(MPa)
	D2/1	100	160	140	3.00	1.62	31.3	15	427	1.51
	61	190	320	270	4.07	2.07	32.4	30	465	1.19
	5r	190	320	270	3.00	2.07	32.4	30	465	1.49
	6r	190	320	270	4.07	2.07	32.4	30	465	1.33
	D3/1	150	240	210	3.00	1.62	33.8	15	413	1.47
	D3/21	150	240	210	3.00	1.62	33.8	15	413	1.36
	D3/2r	150	240	210	3.00	1.62	33.8	15	413	1.36
	7 2	190	320	278	5.00	2.01	33.9	30	465	1.29
	7 1	190	320	278	5.00	2.01	33.9	30	465	1.18
Leonhardt &	8 2	190	320	274	6.00	2.04	34.0	30	465	1.26
(1962) (Cont.)	8 1	190	320	278	6.00	2.01	34.0	30	465	1.24
	D4/21	200	320	280	3.00	1.68	34.6	15	439	1.27
	D4/2r	200	320	280	3.00	1.68	34.6	15	439	1.27
	D4/1	200	320	280	3.00	1.68	34.6	15	439	1.32
	9 1	190	323	273	6.92	2.05	34.9	30	465	1.14
	9 2	190	323	273	6.92	2.05	36.0	30	465	1.14
	14 2	190	323	273	2.75	2.05	36.2	30	465	1.66
	14 1	190	323	273	2.75	2.05	36.2	30	465	1.66
	C3	200	500	450	3.00	1.28	38.3	30	425	1.13
	C1	100	180	150	3.00	1.29	38.3	30	425	1.44
	AW1	1170	590	538	3.44	0.79	36.9	10	467	0.93
$L_{\rm uball}$ (2006)	AW4	1168	590	506	3.66	1.69	39.9	10	467	1.21
Lubell (2000)	AX8	705	339	289	3.60	1.72	41.0	10	467	1.34
	AX6	703	338	288	3.61	1.73	41.0	10	467	1.39
Mansur (1986)	A4	150	225	200	4.40	1.34	24.2	20	463	1.13
i	Va-19	203	457	403	3.78	0.93	23.5	25	694	0.77
	Va-20	203	457	403	3.78	0.93	25.6	25	694	0.81
Mathey & Watstein (1963)	VIb-22	203	457	403	2.84	0.84	25.8	25	707	0.76
	VIa-25	203	457	403	3.78	0.47	25.8	25	696	0.61
	VIb-21	203	457	403	2.84	0.84	26.1	25	707	0.87
	VIa-24	203	457	403	3.78	0.47	26.3	25	696	0.67
	VIb-23	203	457	403	2.84	0.84	30.6	25	707	0.92

Tabela B.1 – Banco de dados para validação do modelo teórico (Cont).

Autor	Vigo	b_w	h	d	ald	ρ_l	f'_{c}	$D_{\rm max}$	f_y	$ au_{Lit}$
Autor	viga	(mm)	(mm)	(mm)	u/u	(%)	(MPa)	(mm)	(MPa)	(MPa)
	A1	100	180	150	3.00	2.65	32.4	19	367	1.83
	B2	100	180	150	3.00	2.65	38.4	19	367	2.05
	B1	100	180	150	3.00	2.65	38.4	19	367	1.95
Matsui <i>et al</i> .	C2	100	180	150	3.00	2.65	48.7	19	367	2.15
(1995)	C1	100	180	150	3.00	2.65	48.7	19	367	1.97
	D2	100	180	150	3.00	2.65	70.9	19	367	2.26
	D1	100	180	150	3.00	2.65	70.9	19	367	2.23
	E1	100	180	150	3.00	2.65	83.4	19	367	2.55
	1	152	305	254	3.00	1.03	17.1	19	400	0.95
	18	152	305	254	5.40	2.07	18.1	19	400	0.92
Mattock (1969)	10	152	305	254	3.00	3.10	18.6	19	400	1.45
	15	152	305	254	5.40	1.03	25.9	19	400	0.81
	24	152	305	254	5.40	3.10	29.2	19	400	1.36
	B-B4	152	305	268	3.41	1.89	15.4	25	483	1.01
	A-B4	178	305	272	2.94	1.66	16.8	25	483	1.16
	A-B3	178	305	270	2.96	1.60	19.2	25	483	1.17
	B-B12	152	305	268	3.41	1.89	20.2	25	483	1.18
	A-B1	178	305	267	3.00	1.62	21.2	25	483	1.20
	A-B2	178	305	268	2.99	1.63	21.6	25	483	1.27
	B-B14	152	305	268	3.41	1.89	22.6	25	483	1.08
	B-B10	152	305	268	3.41	1.89	24.0	25	483	1.22
	B-B3	152	305	268	3.41	1.89	25.8	25	483	1.30
Moody et al.	A-A1	178	305	262	3.05	2.17	30.3	25	483	1.30
(1954)	B-B5	152	305	268	3.41	1.89	30.7	25	483	1.29
	B-B7	152	305	268	3.41	1.89	30.9	25	483	1.27
	A-A3	178	305	268	2.99	2.22	31.0	25	483	1.60
	A-A2	178	305	267	3.00	2.15	31.0	25	483	1.42
	A-A4	178	305	270	2.96	2.37	31.5	25	483	1.49
	B-B1	152	305	268	3.41	1.89	36.7	25	483	1.44
	B-B15	152	305	268	3.41	1.89	37.4	25	483	1.27
	B-B13	152	305	268	3.41	1.89	37.8	25	483	1.38
	B-B11	152	305	268	3.41	1.89	38.1	25	483	1.49
	B-B9	152	305	268	3.41	1.89	41.2	25	483	1.33

Tabela B.1 – Banco de dados para validação do modelo teórico (Cont).

Autor	Viga	b_{w}	h	d	a/d	$ ho_l$	f'_{c}	D _{max}	f_y	$ au_{Lit}$
	v 15u	(mm)	(mm)	(mm)	u / u	(%)	(MPa)	(mm)	(MPa)	(MPa)
	B56-B2	305	406	368	3.86	1.85	14.7	6	483	0.92
	B70-B2	305	406	365	4.87	1.86	16.3	6	483	0.84
	B56-A4	305	406	375	3.79	2.41	25.0	6	483	1.23
	B56-B4	305	406	368	3.86	1.85	27.2	6	483	1.12
	B84-B4	305	406	363	5.88	1.88	27.2	6	483	1.05
Viest (1957)	B70-A4	305	406	368	4.83	2.46	27.2	6	483	1.22
	B56-E4	305	406	368	3.86	1.24	28.4	6	483	1.00
	B40-B4	305	406	368	2.76	1.85	34.8	6	483	1.40
	B56-A6	305	406	356	3.99	3.79	39.9	6	483	1.67
	B70-A6	305	406	356	4.99	3.83	45.0	6	483	1.68
	B56-B6	305	406	372	3.82	1.83	45.7	6	483	1.23
	AO-3-3b	152	337	298	3.58	3.34	21.3	10	414	1.43
	AO-3-3c	152	337	298	3.58	2.33	27.8	10	414	1.47
	AO-7-3a	152	337	298	3.58	3.34	38.6	10	414	1.81
	AO-7-3b	152	337	298	3.58	3.34	42.7	10	414	1.83
Mphonde & Frantz (1985)	AO-11-3b	152	337	298	3.58	3.34	76.6	10	414	1.97
11unt2 (1966)	AO-11-3a	152	337	298	3.58	3.34	76.9	10	414	1.98
	AO-15-3a	152	337	298	3.58	3.34	83.4	10	414	2.06
	AO-15-3c	152	337	298	3.58	3.34	94.2	10	414	2.16
	AO-15-3b	152	337	298	3.58	3.34	96.1	10	414	2.21
	NL3	200	250	250	4.00	2.57	43.5	19	343	1.67
	NL2	200	250	250	4.00	2.57	43.9	19	343	1.61
	NS1	200	250	250	3.00	2.57	45.5	19	343	1.86
Muruvama &	NS2	200	250	250	3.00	2.57	46.8	19	343	1.82
Iwabuchi	NL5	200	250	250	4.00	3.18	47.1	19	343	1.82
(1986)	NP1	200	250	250	3.10	3.18	47.2	19	343	1.75
	NL4	200	250	250	4.00	3.18	47.9	19	343	1.79
	NP3	200	250	250	3.10	3.18	49.2	19	343	1.90
	N2	200	250	250	2.50	1.55	51.0	19	343	1.67
Niwa <i>et al</i> .	3	300	1100	1000	3.00	0.14	24.6	25	999	0.34
(1987)	1	600	2100	2000	3.00	0.28	27.1	25	999	0.34
	R3	152	305	272	3.36	1.46	24.8	19	621	1.09
Placas & Regan (1971)	R2	152	305	272	3.36	1.46	26.2	19	621	1.14
	D2	152	305	272	3.36	1.46	30.3	19	621	1.27
Rahal <i>et al.</i> (2004)	A65-NTR	200	370	330	2.73	2.16	61.3	12	483	1.89

Tabela B.1 – Banco de dados para validação do modelo teórico (Cont).

Autor	Viga	b_w	h	d	a/d	ρ_l	f'_c	$D_{\rm max}$	f_y	$ au_{Lit}$
Autor	viga	(mm)	(mm)	(mm)	u / u	(%)	(MPa)	(mm)	(MPa)	(MPa)
	S-13	152	311	265	4.22	1.73	23.7	13	655	0.99
Rajagopalan	S-9	152	311	262	4.27	0.53	25.1	13	1779	0.62
(1968)	S-3	152	311	267	4.19	0.81	29.0	13	524	0.77
~ /	S-2	154	311	265	3.83	0.98	33.1	13	655	0.92
	6	800	100	83	5.42	1.54	28.1	10	670	1.45
	19	1000	100	83	5.42	1.51	29.0	20	670	1.34
	26	1200	100	83	5.42	1.64	29.7	20	670	1.38
	20	1000	100	83	5.42	1.51	30.8	20	670	1.48
	14	800	100	83	5.42	1.54	31.0	20	670	1.39
Regan &	18	1000	100	83	5.42	1.51	31.2	20	670	1.45
(1988)	11	400	100	83	5.42	1.66	33.4	20	670	1.66
	13	600	100	83	5.42	1.58	33.4	20	670	1.60
	10	400	100	83	5.42	1.66	33.4	20	670	1.58
	12	600	100	83	5.42	1.58	33.4	20	670	1.53
	3	800	100	83	5.42	1.54	37.8	10	670	1.47
	24	1200	100	83	5.42	1.64	38.6	20	670	1.51
	N7	500	250	225	2.50	1.39	24.6	16	441	1.24
Reineck et al.	N8	500	250	226	3.50	0.79	25.8	16	501	0.90
(1978)	N6	500	250	226	2.50	0.79	25.8	16	501	1.04
	s1_1	150	200	165	4.00	1.89	85.1	16	523	1.87
Remmel	s1_4	150	200	160	4.00	4.09	84.5	16	474	2.40
(1991)	s1_2	150	200	165	3.06	1.87	85.1	16	523	1.94
	504a	1524	305	254	3.00	1.77	24.9	25	510	1.34
\mathbf{D}^{*}_{1}	501a	1829	305	254	2.70	1.38	25.4	25	425	1.29
Richart (1948)	501b	1829	305	254	2.70	1.38	25.7	25	425	1.25
	504b	1524	305	254	3.00	1.77	25.8	25	510	1.44
	A-2	200	400	372	3.00	0.81	80.6	16	500	1.12
Scholz (1994)	D-3	200	400	362	4.00	1.94	96.8	16	500	1.67
	D-2	200	400	362	3.00	1.94	96.8	16	500	1.67
Seliem <i>et al.</i> (2007)	G-2.7-32	460	915	850	2.74	0.72	32.0	19	468	0.73
	AT-3-A	696	338	307	3.38	0.93	37.5	10	448	1.12
Sherwood <i>et</i> <i>al.</i> (2006)	AT-2-250A	250	470	437	2.96	0.92	37.7	10	465	1.06
	AT-2-1000B	1000	470	437	2.96	0.91	37.9	10	465	1.02
	AT-2-250B	250	470	440	2.94	0.90	38.5	10	465	1.03
	AT-2-1000A	1000	470	440	2.94	0.91	39.0	10	465	1.08
	AT-2-3000	3000	472	440	2.94	0.91	40.6	10	465	0.98

Tabela B.1 – Banco de dados para validação do modelo teórico (Cont).

Autor	Vigo	b_w	h	d	a/d	$ ho_l$	f'_c	$D_{\rm max}$	f_y	$ au_{Lit}$
Autor	viga	(mm)	(mm)	(mm)	u / u	(%)	(MPa)	(mm)	(MPa)	(MPa)
	L-40N1	300	1510	1400	2.89	0.83	28.1	40	452	0.58
	L-40N2	300	1510	1400	2.89	0.83	28.5	40	452	0.69
	S-40N2	122	330	280	2.89	0.83	29.1	40	494	1.02
	L-20N1	300	1510	1400	2.89	0.83	31.4	20	452	0.63
	L-20N2	300	1510	1400	2.89	0.83	33.2	20	452	0.63
	S-20N2	122	330	280	2.89	0.83	38.1	20	494	1.12
Sherwood <i>et</i> $al (2007)$	L-10N1	300	1510	1400	2.89	0.83	38.4	10	452	0.63
ui. (2007)	L-50N2	300	1510	1400	2.89	0.83	40.1	50	452	0.71
	L-50N1	300	1510	1400	2.89	0.83	41.0	50	452	0.65
	S-10N2	122	330	280	2.89	0.83	41.9	10	494	1.12
	S-10N1	122	330	280	2.89	0.83	41.9	10	494	1.07
	S-50N1	122	330	280	2.89	0.83	43.5	50	494	1.13
	S-10H	122	330	280	2.89	0.83	77.3	10	494	1.10
Smith (1970)	10/0	150	230	200	3.82	2.01	34.5	19	500	1.46
Tariq & Newhook (2003)	R-S010N2	160	400	346	3.32	1.08	43.2	20	483	1.12
	1B	203	406	370	3.02	1.03	28.9	10	350	1.01
Taylor (1968)	3B	203	406	370	3.02	1.03	31.6	10	350	1.01
	2A	203	406	370	3.02	1.55	33.2	10	350	1.22
	C4	100	250	233	3.00	1.35	18.5	9	420	0.97
	C5	100	250	233	3.00	1.35	19.5	9	420	1.16
	B2	200	500	465	3.01	1.35	22.0	19	420	0.94
	C2	100	250	233	3.00	1.35	22.7	9	420	1.03
	C3	100	250	233	3.00	1.35	24.4	9	420	1.18
Taylor (1972)	A2	400	1000	930	3.01	1.35	25.1	19	420	0.88
	C6	100	250	233	3.00	1.35	25.6	2	420	1.18
	B3	200	500	465	3.01	1.35	28.4	9	420	0.92
	D3	60	150	139	3.02	1.35	28.4	2	420	1.27
	D1	60	150	139	3.02	1.35	28.4	2	420	1.39
	D4	60	150	139	3.02	1.35	28.4	2	420	1.37
	B11	150	250	221	3.00	1.82	54.0	16	500	1.75
Thorenfeldt & Drangshold (1990)	B63R	300	500	414	4.00	3.24	77.8	16	500	1.85
	B63	300	500	414	4.00	3.24	77.8	16	500	1.79
	B53	150	250	207	4.00	3.24	97.7	16	500	2.47
	B54	150	250	207	3.00	3.24	97.7	16	500	2.50

Tabela B.1 – Banco de dados para validação do modelo teórico (Cont).

Autor	Viga	b _w (mm)	h (mm)	d (mm)	a / d	ρ _l (%)	<i>f</i> ' _c (MPa)	D _{max} (mm)	f_y (MPa)	τ _{Lit} (MPa)
Tureyen &	V-S-1	457	427	360	3.39	0.96	40.9	19	524	1.09
Frosch (2002)	V-S-2	457	427	360	3.39	1.92	41.4	19	524	1.24
Walraven &	A2	200	450	420	3.00	0.74	22.9	16	440	0.84
Lehwalter (1994)	A3	200	750	720	3.00	0.79	23.2	16	440	0.70
Yost et al.	1Steelc	229	286	227	4.03	1.54	36.3	25	600	1.12
(2001)	1Steel1	229	286	227	4.03	1.54	36.3	25	600	1.17

Tabela B.1 – Banco de dados para validação do modelo teórico (Cont).

APÊNDICE C: ARTIGO (LIMA et al.,2021)

1	A MODEL FOR SHEAR RESISTANCE OF REINFORCED CONCRETE BEAMS
2	Joao Lima, Luciano Reis & Denio Oliveira
3	
4	Biography: Joao Lima is a M. Sc. in structural engineering at Federal University of Para, Para,
5	Brazil. He is currently a researcher and Ph. D. student from the same institution with an emphasis
6	on experimental analyzes of shear in reinforced concrete beams.
7	Luciano Reis is a M. Sc. in structural engineering and his research interests are reinforced concrete,
8	metallic structures and computational mechanics structures. He is professor at Federal Institute of
9	Education, Science and Technology of Maranhao State.
10	Denio Oliveira is an associated professor at Federal University of Para, Para, Brazil. His research
11	interests are reinforced concrete structures with emphasis to shear and torsion, besides structural
12	durability, rehabilitation, strengthening and development of new materials. As head of the Civil
13	Engineering Laboratory conduces and encourages several post-graduate studies to improve the
14	construction industry in the North Area of Brazil. He received his B.S. from Federal University of
15	Para in 1995, M.S. and Ph.D. from University of Brasilia in 1998 and 2003, respectively, and his
16	Post Ph.D. from Imperial College of London in 2007.
17	
18	ABSTRACT
19	The analysis of the strength ability of beams with shear stirrups involves problems with complex
20	interactions between parameters. This article introduces a new formulation in order to verify the
21	shear strength of beams with stirrup for diagonal tensile burst by univariate power regressions to
22	evaluate the preponderance degrees of the most common shear factors from an initial database with
23	90 beams. Besides analyzing the performance of the standards codes, empirical models and
24	theoretical models with another 160 different tests and a 7 beams experimental program to
25	designate the accuracy of the models.

26

- 1 Keywords: reinforced concrete beam, shear stress, shear reinforcement.
- 23

INTRODUCTION

The application of new materials and structural design methodologies that rationalize the use of reinforced concrete continues to be the target of numerous researches. Collins et al.¹ highlight the advancement of new structural sizing methods which satisfactorily portray the behavior of shear beams, however, the macro interaction between concrete and transverse reinforcement does not delimit plausible solutions to describe the failure mode and the real strength of the beams.

9 Therefore, including parameters that are prevalent resistance of beams with shear stirrups are 10 crucial for the best performance of a new model that describes the ultimate limit state satisfactorily. Zhang² and Ismail et al.³ highlight the influence of the relationship on the increase of strength in 11 12 beams under arc effect, Sneed and Ramirez⁴ and Panda and Gangolu⁵ complement that the shear 13 strength is influenced by the longitudinal reinforcement rate variation. Bazant and Kazemi⁶ give prominence to the size effect influence with decreasing internal shear stresses related to beam 14 height (d), as well as Conforti⁷ that corroborates with the transverse dimensions influence like 15 16 width (b_w) and effective height (d).

17 Thus, the codes analysis are emphasized, besides the authors Zsutty⁸ and Russo et al.⁹ that stand out 18 for the use of unusual parameters to the aforementioned rules, making even good results in a larger 19 sample space for analysis.

20 This paper presents a new formula that includes factors not used by the codes analyzed for ultimate 21 shear strength of tensile diagonal reinforced concrete beams, developed from a database of 90 22 beams.

23

24

RESEARCH SIGNIFICANCE

The main importance of this research is to propose a new simplified and consistent method to prescribe shear strength in stirrup beams, differentiating by relating the predominant parameters to shear in beams from the proportionality relationship with the ultimate stress, proven from the
 literature and a database, with 90 beams, used to create the proposed model through univariate
 regression. The results of the experimental program and database analysis, with other 160 beams,
 show that the model maintained better accuracy and precision than analytical and empirical models.

5 6

ANALYTICAL INVESTIGATION

7 ACI 318-19¹⁰

8 The American Concrete Institute, establishes the dimensioning of reinforced concrete beams based 9 on the classic Ritter-Mörsch truss, stipulating the strut angle in relation to the span at 45°. The Eq. 10 (1) compounds the resistant parcels of concrete (V_c) and shear reinforcement (V_{sw}) , for the 11 calculation of nominal shear strength (V_n) . The contributing portion of the concrete mechanisms 12 adopt the longitudinal ratio (ρ_l) , size effect factor (λ_s) and compressive strength of concrete (f'_c) , 13 as shown in Eq. (2) and Eq. (3).

14
$$V_n = 1.33 \cdot (V_c + V_{sw}) \le \frac{5}{6} \cdot \sqrt{f'_c} \cdot b_w \cdot d$$
 (1)

15
$$V_c = \frac{2}{3} \cdot \lambda_s \cdot (\rho_l)^{\frac{1}{3}} \cdot \sqrt{f'_c} \cdot b_w \cdot d$$
(2)

$$\lambda_s = \sqrt{\frac{2}{1 + 0.004 \cdot d}} \tag{3}$$

17 If the shear strength of calculation exceed $0.75 \cdot V_c$, a shear reinforcement designed for the purpose 18 of satisfying Eq. (4) should be used using area of shear reinforcement (A_{sw}) , stirrups spacing (s)19 and yield stress (f_{yw})

20
$$V_{sw} = \frac{A_{sw}}{s} \cdot f_{yw} \cdot d \le \frac{2}{3} \cdot \sqrt{f'_c} \cdot b_w \cdot d$$
(4)

21

2 Eurocode 2¹¹

1

The nominal shear strength (V_n) is obtained by the minimum value between the contribution of
transverse reinforcement (V_{Rd,s}) and the crushing of the compression stuts (V_{Rd,max}) as shown in Eq.
(5) to (7).

6
$$V_{Rd,s} = \frac{A_{sw}}{s} \cdot z \cdot f_{yw} \cdot \cot(\theta) \text{ (where } 21.8^{\circ} \le \theta \le 45^{\circ}\text{)}$$
(5)

7
$$V_{Rd,\max} = \frac{\alpha_c \cdot v \cdot f'_c \cdot b_w \cdot z}{\cot(\theta) + \tan(\theta)}$$
(6)

8
$$\nu = 0.6 \cdot \left(1 - \frac{f'_c}{250}\right) \tag{7}$$

9 where v is a strength reduction factor, $\alpha_c = 1$ for non-prestressed structures, z is a lever arm 10 equal $0.9 \cdot d$ and θ is the inclination of the diagonal compressive stress.

11

12 Simplified compression field theory (SCFT)¹²

13 The model of Bentz *et al.* $(2006)^{12}$ presents simplifications to the theoretical method based on 14 experimental analysis of Vecchio & Collins $(1986)^{13}$. Shear stress is the sum of the contributing 15 portions of concrete and steel, using ratio of transverse reinforcement (ρ_w), according to Eq. (8). 16 The SMCFT addresses two parameters, the tensile stress factor in the cracked concrete (β) 17 calculated from Eq. (9) and θ is obtained by Eq. (10).

18
$$v_n = v_c + v_{sw} = \beta \cdot \sqrt{f'_c} + \rho_w \cdot f_{yw} \cdot \cot(\theta)$$
(8)

19
$$\beta = \frac{0.4}{1 + 1500 \cdot \varepsilon_{st}} \cdot \frac{1300}{1000 + s_{xe}}$$
(9)

20
$$\theta = (29 + 7000 \cdot \varepsilon_{sl}) \cdot \left(0.88 + \frac{s_{xe}}{2500}\right) \le 75^{\circ}$$
(10)

21 s_{xe} is the crack spacing, determined by Eq. (11):

2 ZSUTTY⁸

1

The paper proposes two models of equations for prediction of ultimate shear stresses. (τ_u). The author points out that the resistance for single rectangular beams with concentrated load depends on factors such as the support conditions and therefore the shear span (a) and the effective height (d) are major factors for the beams classification. These define Eq. (18) and (19) for their use in slender beams with $a/d \ge 2.5$ and short beams with a/d < 2.5, adding the shear reinforcement contribution.

9
$$\tau_u = 2.17 \cdot \left(f'_c \cdot \rho_l \cdot \frac{d}{a} \right)^{\frac{1}{3}} + \rho_w \cdot f_{yw}$$
(18)

10
$$\tau_{u} = 5.4 \cdot (f'_{c} \cdot \rho_{l})^{\frac{1}{3}} \cdot \left(\frac{d}{a}\right)^{\frac{3}{4}} + \rho_{w} \cdot f_{yw}$$
(19)

11

12 RUSSO et al.9

13 The author's analysis is based on Russo et al.¹⁵, which determined a second order differential 14 equation to rule the shear plane between the interfaces of a non-stirrup beam tested by 4 support 15 points, they were defined parametrically by the mechanical analysis of the acting forces. It differs 16 from other models by considering the size effect across the maximum diameter of the coarse aggregate (d_a) and the dowel effect using the longitudinal reinforcement rate (ρ_i) and the yield 17 stress of longitudinal reinforcement (f_{yl}) , that results in the ultimate shear stress (τ_u) . The 18 transverse reinforcement use is determined by Russo et al.¹⁵ which has as its platform an iteration 19 20 system between a 126 beams database based on the best uniformity to predict the experimental 21 results, leading to Eq. (20).

2 ZSUTTY⁸

1

The paper proposes two models of equations for prediction of ultimate shear stresses. (τ_u). The author points out that the resistance for single rectangular beams with concentrated load depends on factors such as the support conditions and therefore the shear span (a) and the effective height (d) are major factors for the beams classification. These define Eq. (18) and (19) for their use in slender beams with $a/d \ge 2.5$ and short beams with a/d < 2.5, adding the shear reinforcement contribution.

9
$$\tau_u = 2.17 \cdot \left(f'_c \cdot \rho_l \cdot \frac{d}{a} \right)^{\frac{1}{3}} + \rho_w \cdot f_{yw}$$
(18)

10
$$\tau_{u} = 5.4 \cdot (f'_{c} \cdot \rho_{l})^{\frac{1}{3}} \cdot \left(\frac{d}{a}\right)^{\frac{3}{4}} + \rho_{w} \cdot f_{yw}$$
(19)

11

12 RUSSO et al.9

13 The author's analysis is based on Russo et al.¹⁵, which determined a second order differential 14 equation to rule the shear plane between the interfaces of a non-stirrup beam tested by 4 support 15 points, they were defined parametrically by the mechanical analysis of the acting forces. It differs 16 from other models by considering the size effect across the maximum diameter of the coarse aggregate (d_a) and the dowel effect using the longitudinal reinforcement rate (ρ_i) and the yield 17 stress of longitudinal reinforcement (f_{yl}) , that results in the ultimate shear stress (τ_u) . The 18 transverse reinforcement use is determined by Russo et al.¹⁵ which has as its platform an iteration 19 20 system between a 126 beams database based on the best uniformity to predict the experimental 21 results, leading to Eq. (20).

$$1 \qquad \tau_{w} = 1.13 \cdot \left[\frac{1 + \sqrt{\frac{5.08}{d_{a}}}}{\sqrt{1 + \frac{d}{25 \cdot d_{a}}}} \right] \cdot \left[\rho_{l}^{0.4} \cdot f_{c}^{*0.39} + 0.5 \cdot \rho_{l}^{0.83} \cdot f_{yl}^{*0.89} \cdot \left(\frac{a}{d}\right)^{-1.2 - 0.45 \cdot \frac{a}{d}} \right] + 0.17 \cdot f_{c}^{*0.5} \left(\rho_{w} \cdot f_{yw} \right)^{0.7}$$
(20)

2

3 Proposed Model

The data from 90 beams presented in the **Table 1** were collected from the work of 20 authors to formulate the proposed model. These beams failure by shear with diagonal tensile and had their data combined to develop a more accurate equation in order to determine the ultimate shear stress using factors such as the cross section dimensions of the beams b_w , d, compressive strength f'_c , longitudinal reinforcement rate ρ_l , transverse reinforcement rate ρ_w , shear span a and the ultimate stress from literature (τ_{Lit}).

10 The method is based on correlating each of the database parameters with the experimental shear 11 stresses. Univariate regressions were created, and trend lines denote better results when following 12 the exponential pattern. The longitudinal reinforcement rate of the compressed zone was subtracted 13 from the value of the longitudinal reinforcement of the tensile zone, as it does not fit the Ritter-14 Mörsch truss analogy, which shows greater accuracy to the proposed model, as shown in the Fig. 2. 15 The Fig. 2 shows that the parameters alone present proportionality relations for size effect, dowel 16 action, arch action, as well as compressive strength of concrete and the portion of the stirrup's 17 strength to shear intrinsic in the Ritter-Mörsch truss, making it possible to use the tensile stress 18 coefficient (α).

The determination coefficient (R²) is fundamental when evaluating the degree of influence of the parameters. Therefore, when adjusting the variables according to Eq. (21) to obtain better accuracy, the proportionality factor (C_{sw}) was defined considering the parameters for minimum reinforcement τ_{sw1} and τ_{sw2} in Eq. (22) and (23) respectively. In conformity with the NBR 6118-14³⁶, results to Eq. (24). By using the relationships between the **Fig. 3** and **4** and organizing the equation of the **Fig.**

1 4, Eq. (25) was defined using f_{uw} the ultimate strength of the transverse reinforcement to obtain

2 the ultimate shear stress (τ_u).

3
$$\alpha = \frac{\sigma_{sw} \cdot \rho_l \cdot f'_c}{b_w \cdot a}$$
(21)

4
$$\tau_{sw1} = 1.096 \cdot \sigma_{sw}$$
 (22)

5
$$\tau_{sw2} = 0.0658 \cdot f'_c^{\frac{2}{3}}$$
 (23)

$$C_{sw} = 16.66 \cdot \frac{\sigma_{sw}^2 \cdot \rho_l \cdot f'_c^{\frac{1}{3}}}{b_w \cdot a}$$
(24)

7
$$\tau_{u} = 23.18 \cdot f_{c}^{\dagger 0.065} \cdot (\rho_{w} \cdot f_{uw})^{0.392} \cdot \left(\frac{\rho_{l}}{b_{w} \cdot a}\right)^{0.196}$$
(25)

8 The proposed model covers a wide range of applications. The ranges for each parameter are: 50 mm 9 $(1.97 \text{ in.}) \le b_w \le 457 \text{ mm} (18 \text{ in.}), 150 \text{ mm} (5.91 \text{ in.}) \le d \le 1200 \text{ mm} (47.2 \text{ in.}), 0.76\% \le \rho_l \le 6.62\%, 1.5 \le a/d \le 7.2, 14 \text{ MPa} (2.03 \text{ ksi}) \le f'_c \le 125 \text{ MPa} (18.13 \text{ ksi}), 0.11 \text{ MPa} (0.016 \text{ ksi}) \le 11 \rho_w \cdot f_{yw} \le 5.06 \text{ MPa} (0.734 \text{ ksi}).$

12 13

EXPERIMENTAL PROGRAM

14 Seven beams of reinforced concrete with vertical stirrups placed perpendicular to the longitudinal 15 reinforcement were tested with a reference beam and 3 groups with 2 beams each, varying the 16 transverse reinforcement rate, height and width. The tests aimed to simulate usual 4 point loading 17 situations with two simply condition supports, two point-loads were applied to a hundred ton 18 actuator and a steel spreader beam was used to equally distribute the load of the roller support on 19 top of the tested beam, as shown in the Fig. 5 and 6, with load increases of 4.9 kN (1.1 kips) at each reading of the concrete strain gauges (SG_c) , stirrup (SC_s) , longitudinal bars (SG_b) and 20 deflectometers. The characteristics of beams are presented in the Table 2. The experimental 21

program aimed to evaluate the performance of the proposed equation with beams that have
 controlled load distribution conditions and failure.

3

4 Reinforcements

The steel bars with diameter of 5.0 mm (0.197 in.) and 20 mm (0.78 in.) were characterized according to the NBR 6152-92³⁷, with the aim of determining the values for elasticity modulus (E_s) of 257.7 GPa (37,376.22 ksi), yield stress (f_y) of 670 MPa (97.18 ksi), failure stress (f_u) of 717 MPa (103.99 ksi) and the yield strain (\mathcal{E}_{ys}) of 4.6 mm/m (‰) for the transverse reinforcement with 5 mm (0.197 in.) diameter bars. The longitudinal bars with diameter of 20 mm (0.78 in.), elasticity modulus (E_s) of 248 GPa (35,969.35 ksi), yield stress (f_y) of 570 MPa (82.67 ksi), failure stress (f_u) of 685 MPa (99.35 ksi) and the yield strain (\mathcal{E}_{ys}) of 2.3‰.

12

13 Concrete

The concrete was made by Portland cement, CP I-40, medium sand and gravel with a maximum diameter of 9.5 mm (0.374 in.). It was made cylindrical proofs of 100 mm x 200 mm (3.9 in. x 7.9 in.) with axial compressive strength of 50.6 MPa (7.34 ksi), tension strength by compression diametral 4.8 MPa (0.7 ksi) and modulus of elasticity 39.8 GPa (5,771 ksi), according to the recommendations of the NBR 5738-16³⁸, NBR 5739-07³⁹, NBR 7222-11⁴⁰ and NBR 8522-08⁴¹.

19 20

EXPERIMENTAL RESULTS

21 Vertical deformations

The results showed that the stiffness of the beams enhances significantly with increasing flexural reinforcement rate and cross section dimensions, which influences the vertical displacements of the beams, as shown in the **Fig. 7**. Addition of stirrups increases rigidity by reducing the distances between nodes of the analogous truss.

2 Concrete and steel strains

The concrete remained in the pseudo-linear regime until the beams failure, the strains vary depending on the stiffness, as shown in the **Fig. 8**. The longitudinal reinforcement presented linear behavior, with shown in the **Fig. 9** and all beams submitted to flexure did not present yielding with strains less than 2.3 ‰, with little flexural cracking and low vertical displacements.

7 The Fig. 10 shows the strains in the stirrups, which defined the failure modes of the beams. The 8 resistance gains of the beams, by increasing the transverse dimension, is evident for the beams VB1 9 and VB2 when the shear strengths are compared. The 60% and 118% increase in geometric shear 10 reinforcement rates for beams VSW1 and VSW2 was proportional to the 33% and 66% width 11 increments, characterizing a resistance gain related to the increase of the shear failure surface. By 12 analyzing the increase in effective height for the VD1 and VD2 beams, the contribution of concrete 13 increases further, thereby increasing the final loads to 100% and 190% due to the increase of the 57% and 114% in effective height, respectively. 14

15

1

16 Ultimate loads and failure modes

17 The failure mode by shear diagonal tension is evidenced when evaluating the shear reinforcement mobilization and the integrity of the beams under flexure. The failure load (P_u), and the cracking 18 19 load (P_{cr}) are briefly presented in the **Table 3**. The **Fig. 10** shows that the increase of the geometric 20 shear reinforcement rate as well as the variation of inertia influenced the strength of the beams 21 when they were compared to the reference beam. (VR). Shear reinforcements were more efficient 22 when they had high strain values, however it was impossible to have the same conclusion between 23 beams of different cross sections where there is variation in the mobilized area around the 24 conventional shear plane between the loading point and support application, as seen in the Fig. 11.

1 As a result of the **Table 4**, the stress from the current experimental results (τ_{Exp}) and theoretical 2 ones (τ_{Theo}) applying each method demonstrate the relationships that all models have conservative 3 results. Among them, the model proposed by Russo et al.,⁹ present the results closest to the 4 experimental results, but the dispersion of the results to Russo et al.⁹ is larger than the proposed 5 model, pointing this as the most assertive method.

6

7

PROPOSED MODELS RESULTS

The accuracy verification of the results was based on the analysis of 160 beams from the database¹⁷⁻ 8 9 ^{36, 42-51}. Comparisons between normative estimates and experimental results consider greater 10 assertiveness for the smallest variation in the relationship between results from literature and 11 theoretical stress. (τ_{Lii} / τ_{Theo}). The **Table 5** presents these relationships for the codes ACI 318-19², NBR 6118-14¹, theoretical propositions by Russo et al.⁹ and Zsutty⁸. The smaller variance of these 12 13 results expresses greater assertiveness by less dispersion of results, this indicates greater precision 14 of the equation. To exemplify the limitations of the codes and authors, the Fig. 12 shows the 15 accuracy in agreement with the increase of the reinforcement rate, where it shows an upward trend in favor of safety, where it can be observed that in the proposed model there is a higher density of 16 17 the results around the unit axis. The Fig. 13. shows the dispersion of the results using box and 18 whiskers.

19

20

CONCLUSIONS

The proposed equation improved the shear resistance estimates when compared to those from all analyzed calculation models for a database of 160 tests. Adopting new parameters and contribution degrees for others variables from the design codes, the accuracy of the new equation reduced the coefficient of variation for only 7.25%, a satisfactory value considering the complexity of the shear phenomenon in reinforced concrete beams.

26
1 REFERENCES

- 2 1. Collins, M. P., Mitchell, D., Adebar, P., Vecchio. F. J., "A General Shear Design Method," ACI
- 3 Structural Journal, V. 93, No. 5, 1996, pp. 36-60.
- 4 2. Zhang, J. P., "Diagonal Cracking and Shear Strength of Reinforced Concrete Beams," Magazine
- 5 of Concrete Research, V. 49, No. 178, 1997, pp. 55-65.
- 6 3. Ismail, K. S., Guadagnini, M., Pilakoutas, K., "Shear Behavior of Reinforced Concrete Deep
- 7 Beams," ACI Structural Journal, V. 114, No. 1, 2017, pp. 87-99.
- 8 4. Sneed, L. H., Ramirez, J. A., "Influence of Cracking on Behavior and Shear Strength of
- 9 Reinforced Concrete Beams," ACI Structural Journal, V. 111, No. 1, 2014, pp. 157-166.
- 10 5. Panda, S. S., Gangolu, A. R., "Study of Dowel Action in Reinforced Concrete Beam by Factorial
- 11 Design of Experiment," ACI Structural Journal, V. 114, No. 6, 2017, pp. 1495-1505.
- 12 6. Bazant, Z. P., Kazemi, M. T., "Size Effect on Diagonal Shear Failure of Beams Without
- 13 Stirrups," ACI Structural Journal, V. 88, No. 3, 1991, pp. 268-276.
- 14 7. Conforti, A., Minelli, F., Plizzari, G. A., "Influence of Width-to-Effective Depth Ratio on Shear
- 15 Strength of Reinforced Concrete Elements without Web Reinforcement," ACI Structural Journal,
- 16 V. 114, No. 4, 2017, pp. 995-1006.
- 17 8. Zsutty, T., "Shear Strength Prediction for Separate Categories of Simple Beam Tests," ACI
- 18 Structural Journal, V. 68, No. 2, 1971, pp. 138-143.
- 19 9. Russo, G., Somma, G., Mitri, D., "Shear Strength Design Formula for RC Beams with Stirrups,"
- 20 Engineering Structures, V. 51, 2005, pp. 66-74.
- 21 10. American Concrete Institute 318, "Building Code Requirements for Structural Concrete,"
- 22 American Concrete Institute, Farmington Hills, Michigan, 2019, 623 pp.
- 23 11. EN 1992-1-1, "Eurocode 2-Design of Concrete Structures-Part. 1: General Rules and Rules for
- 24 Buildings," European Committee for Standardization, Brussels, Belgium, 2004, 225 pp.

- 1 12. Bentz, E. C., Vecchio, F. J., Collins, M. P., "Simplified Compression Field Theory for
- 2 Calculating Shear Strength of Reinforced Concrete Elements," ACI Structural Journal, V. 103, No.
- 3 4, 2006, pp. 614-624.
- 4 13. Vecchio, F. J., Collins, M. P., "The Modified Compression-Field Theory for Reinforced
 5 Concrete Elements Subjected to Shear," *ACI Structural Journal*, V. 83, No. 2, 1986, pp. 219-231.
- 6 14. AASHTO, "LRFD Bridge Design Specifications," eighth edition, American Association of
- 7 State Highway Transportation Officials, Washington, DC, 2017.
- 8 15. Russo, G., Mitri, D., Pauletta, M., "Shear Strength Analysis and Prediction for Reinforced
- 9 Concrete Beams Without," Journal of Structural Engineering, Vol. 51, 2013, pp. 226-235.
- 10 16. Adebar, P., Collins, M. P., "Shear Strength of Members without Transverse Reinforcement,"
- 11 Canadian Journal of Civil Engineering, V. 23, No. 02, 1996, pp. 297-305.
- 12 17. Angelakos, D., "The Influence of the Concrete Strength and Longitudinal Reinforcement ratio
- 13 on the Shear Strength of Large-size Reinforced Concrete Beams with and without Transverse
- 14 Reinforcement," Master's Degree Dissertation. Civil Engineering Department, University of
- 15 Toronto, 1999.
- 16 18. Belarbi, A., Hsu, T. T. C., "Stirrups Stresses in Reinforced Concrete Beams," ACI Structural
- 17 Journal, V. 87, No. 5,1990, pp. 530-538.
- 18 19. Bresler B., Scordelis A.C., "Shear strength of reinforced concrete beams," Journal of The
- 19 American Concrete Institute, V. 60, No. 4, 1963, pp. 51-74.
- 20 20. Bresler, B., Scordelis, A.C., "Shear strength of reinforced concrete beams Series III,"
- 21 Structures and Materials Research, V. 65, No. 10, 1966, pp. 51-74.
- 22 21. Cladera, A., "Shear Design of Reinforced High-Strength Concrete Beam," PhD. Thesis.
- 23 Departamento d'Enginyeria de la Construccón, Universitat Politécnica de Catalunã, Barcelona,
- 24 2002, 325 pp.
- 25 22. Clark, A. P., "Diagonal Tension in Reinforced Concrete Beams," Journal of the American
- 26 Concrete Institute, V.48, No. 11, 1951, pp. 145-156.

- 1 23. Etxeberria, M., "Experimental Study on Microstructure and Structural Behavior of Recycled
- 2 Aggregate Concrete," PhD. Thesis, E.T.S.E.C.C.P.B., UPC, 2004, 230 pp.
- 24. Fernandes, G. B.," Cisalhamento em Vigas de Alta Resistência," *Revista Téchne*, No. 13, 1994,
 pp. 27-30.
- 5 25. Gonzalez, F. B., "Hormigones com Áridos Reciclados Procedentes de Demoliciones,
 6 Propiedades Mecênicas e Comportamento Estructural a Cortante," PhD. Thesis, E.T.S.I.C.C.P. de la
- 7 Coruña, Universidad de la Coruña, 2002, 358 pp.
- 8 26. Haddadin, H. J., Hong, S., Mattock, A. H., "Stirrup Effectiveness in Reinforced Concrete
- 9 Beams with Axial Force," Journal of Structural Division Proceedings of the ASCE, V. 97, No. 9,
- 10 1971, pp. 2277-2297.
- 11 27. Karayiannis, C.G., Chalioris, C.E., 1999, "Experimental investigation of the influence of
- 12 stirrups on the shear failure mechanism of reinforced concrete beams (in Greek)," Proceedings of
- 13 13th Hellenic Conference on Concrete, Rethymnon, Greece, V. 1, 1999, pp. 133-141.
- 14 28. Kong, P. Y. L., Ragan, B. V., "Shear Strength of High-Performance Concrete Beams," ACI
- 15 Structural Journal, V. 95, No. 6, 1998, 1998, pp. 677-688.
- 16 29. Mansour, M. Y., Dicleli, M., Lee, J. Y., Zhang, J., "Predictiong the Shear Strength of
- 17 Reinforced Concrete Beams Using Artificial Neural Networks," Engineering Structures, V. 26,
- 18 2004, pp. 781-799.
- 19 30. Moretto, O., "An investigation of Strength of Welded Stirrups in Reinforced Concrete Beams,"
- 20 Journal of the American Concrete Institute, V. 17, No. 2, 1945, pp. 141-162.
- 21 31. Mphonde, A. G., Frantz, G. C., "Shear Test of High and Low-Strength Concrete Beams without
- 22 Strirrups," ACI Structural Journal, V. 81, No. 4, 1984, pp. 350-357.
- 23 32. Ozcebe, G., Ersoy, U., Tankut, T., "Evaluation of Minimum Shear Reinforcement Requirements
- 24 for Higher Strength Concrete," ACI Structural Journal, V. 96, No. 3, 1999, pp. 361-368.
- 25 33. Placas, A., Regan, P. E., "Shear Failure of Reinforced Concrete Beams," ACI Structural
- 26 Journal, V. 68, No. 10, 1971, pp. 763-773.

- 1 34. Teoh, B. K., Mansur, M. A., Wee, T. H., "Behavior of High-Strength Concrete I-Beams with
- 2 Low Shear Reinforcement," ACI Structural Journal, V. 99, No. 3, 2002, pp. 299-307.
- 3 35. Yoon, Y. S., Cook, W. D., Mitchell, D., "Minimum Shear Reinforcement in Normal, Medium
- 4 and High-Strength Concrete Beams," ACI Structural Journal, V. 93, No. 5, 1996, pp. 576-584.
- 5 36. Associação Brasileira De Normas Técnicas. "NBR 6118: Projeto e Execução de Obras de
 6 Concreto Armado." Rio de Janeiro, 2014, 238 pp.
- 7 37. Associação Brasileira De Normas Técnicas. "NBR 6152: Materiais Metálicos Ensaio de
- 8 Tração à Temperatura Ambiente." Rio de Janeiro, 1992, 13 pp.
- 9 38. Associação Brasileira de Normas Técnicas, "NBR 5738: Concreto Procedimento para
 10 moldagem e cura de corpos de prova." Rio de Janeiro, 2015, 9 pp.
- 11 39. Associação Brasileira de Normas Técnicas, "NBR 5739: Concreto Ensaio de compressão de
- 12 corpos-de-prova cilíndricos." Rio de Janeiro, 2018, 9 pp.
- 13 40. Associação Brasileira De Normas Técnicas. "NBR 7222: Concreto e argamassa Determinação
- 14 da resistência à tração por compressão diametral de corpos de prova cilíndricos." Rio de Janeiro,
- 15 2011, 5 pp.
- 16 41. Associação Brasileira De Normas Técnicas. "NBR 8522: Concreto Determinação dos módulos
- 17 estáticos de elasticidade e de deformação à compressão." Rio de Janeiro, 2011, 20 pp.
- 42. Bahl, N. S., "On the effect of beam depth to shear strength of simply supported reinforced
 concrete beams with and without shear reinforcement," PhD. Thesis, Universität Stuttgart,
 Germany, 1968, 125 pp.
- 21 43. Carelli, J. A., "Cisalhamento em Vigas de Concreto Armado com Estribos Autotravantes,"
- MASc Thesis, Department of Civil Engineering, Universidade Federal de Santa Catarina. 2002, 162
 pp.
- 44. Cederwall, K. ; Hedman, O. ; Loeberg, A. ; Bennett, E. W. ; Dabaiky, S. Y. ; Regan, P. E. ;
- 25 Khan, M. H.; Sorensen, H. C.; Rangan, B. V.; Tang, Man Chung; Seabold, B. V.; Brown, R. H.;
- 26 Jirsa, James O.; Somes, N. F.; Corley, W. G., "Shear In Reinforced Concrete," V.1 and V.2, 1974.

- 1 45. Collins, M. P., Kuchuma, D., "How to Safe are our Large, Lightly Reinforced Concrete Beams,
- 2 Slabs and Footings?," ACI Structural Journal, V. 96, No. 4, 1999, pp. 482-490.
- 3 46. Johnson, M. K., Ramirez, J. A., "Minimum Shear Reinforcement in Beams with Higher
- 4 Strength Concrete," ACI Structural Journal, V. 86, No. 4, 1989, pp. 376-382.
- 5 47. Leonhardt, F., Walther, R., "Schubversuche an einfeldrigen Stahlbetonbalken mit und ohne
- 6 Schubbewehrung (Shear tests of single span RC beams with and without stirrups)," PhD. Thesis,
- 7 Deutscher Ausschuss f^{*}ur Stahlbeton, 1962, 151 pp.
- 8 48. Lim, D. H., Oh, B. H., "Experimental and Theoretical Investigation on the Shear of Steel Fibre
- 9 Reinforced Concrete Beam," Engineering Structures, V. 21, No. 10, 1999, pp. 937-944.
- 10 49. Reineck, K., Bentz, E., Fitik, B., Kuchma, D. A., Bayrak, O., "ACI-DAfStb Databases for Shear
- 11 Tests on Slender Reinforced Concrete Beams with Stirrups," ACI Structural Journal, V. 97, No,
- 12 111, 2014, pp.1147-1192.
- 13 50. Roller, J. J., Russel, H. G., "Shear Strength of High Strength Concrete Beams with Web
- 14 Reinforcement," ACI Structural Journal, V. 87, No. 2, 1990, pp. 191-198.
- 15 51. Shin, S., Lee, K., Moon, J, Ghosh, K., "Shear Strength of Reinforced High-Strength Concrete
- 16 Beams with Shear Span-to-Depth Ratios between 1.5 and 2.5," ACI Structural Journal, V. 96, No.
- 17 61, 1999, pp. 549-556.
- 18

- 1 TABLES AND FIGURES
- 2 List of Tables:
- 3 Table 1 Database
- 4 Table 2 Experimental Program Data
- 5 Table 3 First Crack load, ultimate load and failure mode
- 6 **Table 4** Relationship τ_{Exp} / τ_{Theo}
- 7 **Table 5** Relationship τ_{Lit} / τ_{Theo}
- 8
- 9 List of Figures:
- 10 Fig. 1 Interaction model for SCFT¹² and AASHTO-LRFD¹⁴
- 11 Fig. 2 Parametric analysis for database results
- 12 Fig. 3 Influence of α on the database results behavior
- 13 **Fig. 4** Influence of C_{sw} on the database results behavior
- 14 Fig. 5 Details of the tested beams
- 15 Fig. 6 Original casting and testing
- 16 Fig. 7 Vertical Displacements
- 17 Fig. 8 Concrete's strains
- 18 Fig. 9 Longitudinal reinforcement's strains
- 19 Fig. 10 Shear reinforcement's strain
- 20 Fig. 11 Beams crack patterns
- 21 Fig. 12 Theoretical results trend
- 22 Fig. 13 Estimate's accuracy

Table 1 – Database

Autor	Beam	b _w (mm)	d (mm)	f' _c (MPa)	ρ ₁ (%)	ρ _w (%)	$\sigma_{_{SW}}$ (MPa)	a/d	τ _{Lit} (MPa)
[1]	2	290	278	49-50	1.95	0.20-0.36	0.92-1.66	2.9	3.5-3.9
[2]	1	300	925	65	1.01	0.08	0.40	2.9	1.6
[3]	1	152	559	36	1.68	0.35	1.38	3.7	3.3
[4]	3	231-307	461-466	24-25	1.80-2.43	0.10-0.15	0.33-0.48	3.9-4.9	1.6-2.1
[5]	1	305	461	26	1.77	0.10	0.35	4	1.7
[6]	3	200	351	61-69	2.29-2.99	0.24	1.27	3.1	3.7-4.4
[7]	6	203	390	23-26	2.10-3.10	0.34-0.73	1.13-2.42	1.6-2	4.0-5.1
[8]	1	200	304	42	2.97	0.12	0.63	3.3	3.1
[9]	2	50	280	61-67	6.62	0.25-0.38	2.14-3.21	3.6	8.9-9.0
[10]	5	199-201	305-312	39-45	2.86-2.93	0.11-0.18	0.60-1.05	3.2-3.3	2.7-3.8
[11]	5	178	381	24-45	1.89-5.68	0.28-0.42	1.45-1.91	2.5-4.3	3.8-4.9
[12]	1	200	260	26	1.96	0.04	0.11	3.5	1.4
[13]	22	250	198-299	64-89	1.66-4.37	0.10-0.26	0.63-1.49	2.5-3.3	2.8-4.2
[14]	1	220	244	42	3.60	0.22	0.79	3	3.5
[15]	1	140	464	24	3.99	0.27	1.02	1.8	4.0
[16]	2	152	298	69-83	3.36	0.11-0.26	0.34-0.69	3.6	2.5-3.3
[17]	4	150	310	73-75	2.26-2.75	0.17-0.28	0.43-0.71	3	3.0-3.9
[18]	21	152	254	20-57	1.25-4.16	0.06-0.36	0.44-0.64	3.4-7.2	2.2-6.2
[19]	2	150	657	90-106	2.99	0.12	0.44	2.69	2.6-3.1
[20]	6	375	665	36-87	2.80	0.08-0.24	0.35-1.00	3	1.8-2.9
[1] Ac	[1] Adebar and Collins ¹⁶ ; [2] Angelakos ¹⁷ ; [3] Belarbi and Hsu ¹⁸ ;[4] Bresler and Scordelis ¹⁹ [5]								
Bresle	Bresler and Scordelis ²⁰ [6] Cladera ²¹ ; [7] Clark ²² [8] Etxeberria ²³ ; [9] Fernandes ²⁴ ; [10] González ²⁵ ;								
[11] H	[11] Haddadin et al. ²⁶ ; [12] Karayiannis and Chalioris ²⁷ [13] Kong and Rangan ²⁸ ; [14] Mansour et								
al. ²⁹ [1	al. ²⁹ [15] Moretto ³⁰ [16] Mphonde and Frantz ³¹ ; [17] Ozcebe et al. ³² ; [18] Placas and Regan ³³ ; [19]								

Teoh et al.³⁴; [20] Yoon et al.³⁵

Note: 1 MPa = 0.145 ksi; 1 mm = 0.039 in.

Table 2 – Experimental Program Data

Beam	b_w mm (in.)	D mm (in.)	$\begin{array}{c} A_s \\ mm^2 \\ (in^2.) \end{array}$	<i>a</i> mm (in.)	<i>c</i> mm (in.)	f'c MPa (ksi)	<i>f_{yl}</i> MPa (ksi)	f _{yw} MPa (ksi)	ρ _ι (%)	ρ _w (%)
VR	150 (5.9)	175 (6.88)	39,3 (0,06)	450 (17.71)	1800 (70.86)	50 (7.25)	570 (82.67)	670 (97.17)	2.43	0.101
VSW1	150 (5.9)	175 (6.88)		440 (17.32)	1820 (71.65)				2.54	0.161
VSW2	150 (5.9)	175 (6.88)		440 (17.32)	1820 (71.65)				3.44	0.220
VB1	200 (7.87)	175 (6.88)		440 (17.32)	1820 (71.65)				2.19	0.106
VB2	250 (9.84)	175 (6.88)		440 (17.32)	1820 (71.65)				2.06	0.101
VD1	150 (5.9)	275 (10.82)		690 (27.16)	1320 (51.96)				2.40	0.101
VD2	150 (5.9)	375 (14.76)		940 (37)	820 (32.28)				2.32	0.101

Table 3 - First crack load, ultimate load and failure mode

Beam	$\frac{P_{cr}}{\mathrm{kN}}$	P_u kN	P_{cr} / P_{u}	Failure	
	(kips)	(kips)		mode	
VD	102.9	147.1	0.05	_	
VK	(23.1)	(33.02)	0.95		
VCW1	108	196.1	0.70		
V S W I	(24.24)	(44.02)	0.70		
VCWO	147.1	196.1	0.55		
V S W 2	(33.02)	(44.02)	0.55		
VD1	137.8	161.8	0.75	-	
VBI	(30.93)	(36.32)	0.75	5	
VD2	127.5	196.1	0.95		
VB2	(28.62)	(44.02)	0.85		
VD1	186.3	284.4	0.65	- 2	
VDI	(41.82)	(63.84)	0.05		
VD2	102.9	147.1	0.66		
vD2	(23.1)	(33.02)	0.00		

Failure mode: S (Shear with diagonal tensile)

Table 4 – Relationship τ_{Exp} / τ_{Theo}

Beam	ACI	EC2	SCFT	AASHTO	Zsutty	Russo	Proposal
VR	1.50	2.40	1.31	1.22	1.51	0.98	1.03
VSW1	2.03	2.41	1.73	1.61	1.96	1.33	1.30
VSW2	2.33	2.47	1.95	1.80	2.19	1.48	1.44
VB1	2.29	3.35	1.98	1.86	2.31	1.54	1.64
VB2	1.57	2.33	1.36	1.28	1.59	1.07	1.18
VD1	1.94	3.02	1.74	1.63	1.95	1.39	1.41
VD2	2.30	3.32	2.02	1.88	2.13	1.60	1.66
AVG	2.00	2.76	1.73	1.61	1.95	1.34	1.38
SD	0.32	0.42	0.27	0.25	0.28	0.22	0.21
COV	16.06%	15.31%	15.66%	15.44%	14.24%	16.36%	15.49%

Table 5 – Relationship τ_{Lit} / τ_{Theo}

	ACI	EC2	SCFT	AASHTO	Zsutty	Russo	Proposal
Avg	1.09	1.54	1.11	1.07	1.05	1.05	0.94
SD	0.18	0.46	0.17	0.13	0.18	0.21	0.07
COV	16.67%	30.01%	15.10%	11.78%	17.34%	20.49%	7.25%

Fig. 6 – Original casting and testing

 $\rho_w f_{yw}$ (MPa)

 $\tau_{Lit} \tau_{Theo}$ $\rho_w f_{yw} \, ({\rm MPa})$

ANEXO A: ACEITE (LIMA et al., 2021)

08/07/2021

ScholarOne Manuscripts

ACI Structural and Materials Journals

_	
Preview	
From:	Journals.manuscripts@concrete.org
To:	eng.luciano.creis@gmail.com, lucianobmx@gmail.com
CC:	
Subject:	Decision on Manuscript ID S-2019-349.R2 - Accepted
Body:	Dear Ms Luciano Reis,
	We are pleased to inform you that Manuscript ID S-2019-349.R2 titled "A MODEL FOR SHEAR RESISTANCE OF REINFORCED CONCRETE BEAMS," has been accepted for publication in the ACI Structural/Materials Journal.
	When you have prepared the final manuscript (in accordance with the Author Guidelines and length requirement), please send one complete PDF file of the manuscript, one complete Microsoft Word file of the manuscript, and your responses to the reviewer's comments to: Susan Esper at manuscripts.final@concrete.org For the Structural and Materials Journals
	The reviewers have recommended that your manuscript be published in its present form, and the manuscript will now move to production.
	If you have not already submitted the copyright transfer form, please do so as soon as possible. This form can be found in the "Instructions & Forms" tab in the upper right-hand corner of the Manuscript Central website.
	Please note, authors publishing in the ACI Journals have the option to submit their paper for open access. The publication fee for open access is \$2,000 USD. To submit a paper for open access, please complete the online form at https://www.concrete.org/publications/opensource.aspx.

Thank you for your contribution to the ACI Journals.

Sincerely,

Ms Angela Matthews

Date Sent: 15-May-2021

Close Window