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Abstract

Classification and Characterization Methods
of Non-Technical Losses on Smart Grid

Scenarios

Advisor: Eduardo Coelho Cerqueira
Keywords: Smart Meters; Smart Grid; Non-technical Losses; Ensemble Learning; Infor-
mation Theory Quantifiers.

Nowadays, grid resilience as a feature has become non-negotiable, significantly 
when power interruptions can impact the economy and society. Smart Grids (SGs) 
widespread popularity enables an immense amount of fine-grained e lectricity consump-
tion data to be collected. However, risks can still exist in the Smart Grid (SG), since 
SG systems exchange valuable data, the distribution system loses substantial electrical 
energy. We divide this loss into two categories: technical and non-technical loss. A sub-
stantial amount of electrical energy is lost throughout the distribution system, and these 
losses are divided into two types: technical and non-technical. Non-technical losses (NTL) 
are any electrical energy consumed that is not invoiced. They may occur due to illegal 
connections, fraudulent activities, issues with energy meters such as delay in the instal-
lation or reading errors, contaminated, defective, or non-adapted measuring equipment, 
very low valid consumption estimates, faulty connections, and disregarded customers. 
Non-technical losses are the primary cause of revenue loss in the SG. Annually, electrical 
utilities incur billions in losses due to non-technical reasons. This thesis presents two 
detection methods of NTL: classification a nd c haracterization. We c reate a n ensemble 
predictor-based time series classifier t o c lassify NTL d etection. This p redictor u ses the 
user’s energy consumption as a data input for classification, f rom s plitting t he d ata to 
executing the classifier. A lso, i t a ssumes t he t emporal a spects o f e nergy consumption 
data during the pre-processing, training, testing, and validation stages. The classification 
method has the advantage of classifying heterogeneous features in data. The characteriza-
tion method proposes a study based on Information Theory Quantifiers (ITQ) to mitigate 
this challenge. First, we use a sliding window to convert the user’s energy consumption 
time series into a Bandt-Pompe (BP) probability distribution function. Then, we extract 
the used ITQ. Finally, we apply each metric to the Probability Density Function (PDF) 
and map the layers to characterize their behavior. The characterization method is advan-
tageous to be used when we have big data. Overall, our best results have been recorded 
in the fraud detection-based time series classifiers (TSC) model, improving the empirical 
performance metrics by 10% or more over the other developed models. Our results show that 
users with normal and abnormal energy consumption can be distinguished using only 
Information Theory Quantifiers by considering the range of values for each metric.
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CHAPTER 1

Introduction

This thesis proposal presents classification and characterization methods of Non-

technical Losses (NTL) in Smart Grid scenarios using Machine Learning (ML) and In-

formation Theory Quantifiers (ITQ) . This chapter introduces the main ideas regarding

the application of NTL and its challenges in Smart Grid (SG) scenarios, motivates this

research work, and establishes the research questions, objectives, contributions, and text

organization.

1.1 Overview

The advent of Smart Meters (SMs) technology heralds a new era in energy man-

agement, with its primary benefits being the enhancement of grid resilience and environ-

mental performance [1]. In today’s energy landscape, the ability of SG to ensure flexibility

and reliability is paramount, especially given the economic implications of power interrup-

tions [2]. SG accomplishes this by integrating additional dispersed and distributed power

sources, facilitating the smooth incorporation of new resources, and providing correc-

tive capabilities to address failures swiftly. Complementing this technological leap is the

widespread adoption of SMs, which have transcended their traditional billing role to be-

come pivotal in gathering detailed electricity consumption data [1]. This high-resolution

data collection offers invaluable insights into consumer behaviors and lifestyles, under-

scoring the transformative potential of SMs in understanding and optimizing energy use.

SG and SMs embody a comprehensive approach to modernizing the grid, promising a

future where energy systems are more resilient, flexible, and attuned to environmental

sustainability and the nuanced electricity usage patterns [2].

SM data proves valuable in calculating energy discrepancies, which define the

variance between the total energy generated and the energy billed to customers. One
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can categorize these discrepancies into Technical Losses (TL) and NTL. TL inherently

occurs in energy distribution, resulting from the electrical current passing through sys-

tem components like transformers, sensors, meters, and cables. In contrast, NTL comes

from energy consumption that billing does not account for, often due to inaccuracies or

fraudulent activities [3]. The growing fraud challenge has led to the development of vari-

ous detection strategies, increasing NTL. Among these strategies, data-driven approaches

have become a prominent solution, leveraging the analysis of customer load profiles and

other relevant data to identify discrepancies that indicate NTL. These innovative solutions

benefit from cross-disciplinary insights, combining advanced analytics and sector-specific

knowledge to improve the accuracy and efficiency of NTL detection.

The distribution of electrical energy incurs significant losses, broadly categorized

into TL and NTL, as delineated in various studies [4]. TL are unavoidable and occur nat-

urally during the transmission process, encompassing the dissipation of electricity in its

journey through transportation, transformation, distribution phases, and energy measure-

ment activities. These losses are a fundamental aspect of electrical engineering, reflecting

current transmission technologies’ physical limitations and inefficiencies [5].

On the other hand, NTL refers to electricity consumed but not accounted for

in billing. This type of loss can result from a myriad of factors, including illegal con-

nections to the grid, inaccuracies with meter readings due to delayed installation, meter

malfunctions, equipment that is either contaminated, defective, or not suited for its in-

tended use, underestimations of actual consumption, improper connections, and oversight

of customers’ usage [3, 6]. The challenge of NTL extends beyond technical issues, en-

compassing a wide range of fraudulent activities and operational inefficiencies that lead

to significant economic losses for utility companies [7]. Identifying and mitigating NTL

remains a critical challenge for the industry, especially in SM (SM) operations. Despite

the complexity of the problem and the absence of a one-size-fits-all solution for detecting

NTL, ongoing research and the development of innovative methodologies are crucial for

tackling this pervasive issue [8, 3]. Effective NTL detection strategies are essential for

enhancing power distribution networks’ financial sustainability and operational efficiency.

1.2 Motivations and Challenges

NTL is the primary cause of revenue loss in the SG. Electrical utilities incur

annual losses amounting to billions due to NTL. Developing countries like India and

Brazil each lose 42% and 8% of the total electricity produced annually due to energy theft,

respectively [9]. NTL is still as relevant in developed countries as in developing countries.

Typically, energy losses in developed countries range from 0.5% to 3% of annual revenues.

Though the amount might seem small, financial losses in the United States alone are as

high as 6 billion [9].

Although adding categories to a classification problem adds complexity to the

classification process, it is crucial to identify the types of fraud committed by end-users.
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For example, it can help companies identify the causes of fraud and calculate its finan-

cial impact, develop new security measures, and improve the accuracy and efficiency of

inspection teams. However, according to Chuwa and Wang [3], existing NTL detection

methods cannot effectively identify all types of fraud simultaneously. In addition to being

challenging to classify fraud, distinguishing and detecting different types of fraud is more

complex using unique Machine Learning (ML) techniques.

In this way, ensemble predictors refer to an ML technique that combines the

predictions from multiple models to improve the overall performance of predictive tasks.

i.e., aggregated ML models have become increasingly popular after showing excellent

results in various research fields by combining the outputs of multiple ML algorithms to

achieve better performance than a single classifier. The integration is more heterogeneous

when the different time series classifier types are considered to classify these additional

parameters and attributes in the user class. In this case, ensemble predictors that consider

the time-dependent nature of energy consumption data tend to improve the accuracy and

efficiency of detecting fraud, which remains an open question [10, 3].

On another point, it is possible to incorporate an ITQ algorithm that considers the

time-series dependence of energy consumption data. Therefore, data orientation in time

series can be an essential tool to improve the efficiency of NTL detection as it examines the

temporal order of energy consumption data [11]. Data-oriented methods provide better

NTL detection because they require less data diversity and incur less infrastructure cost

[3]. Furthermore, researchers recognize that a data-centric approach is a promising tool

for bridging the cybersecurity gaps that can arise as current fraud mechanisms evolve [12].

The study of energy fraud is an observational science in which one attempts to

infer the properties of an unknown system from the analysis of measured time records

of its behavior Time Series (TS) [13]. User dynamics analysis, such as fraudulent and

non-fraudulent, yields better solutions by understanding the underlying data generation

process and identifying distinct patterns. We can apply ITQ to these scenarios by using

characterization in NTLs mainly caused by electric fraud. Strategies based on extract-

ing measures such as ITQ (e.g., Shannon entropy, Fisher information, and Statistical

Complexity) combined with ordinal pattern methods have yielded relevant progress in

distinguishing different TS dynamics [14]. Hence, they depict a promising tool to explain

these complex behaviors to improve fraud characterization.

1.3 Research Questions

Based on the Section 1.2, we considered the following research questions for this

thesis proposal:

• How to classify non-technical losses in SG systems?

• How to define the type of non-technical losses in SG systems?



1.4 Objectives 16

• Which is the best classifier to check non-technical losses in SG systems?

1.4 Objectives

This thesis proposal introduces novel methods for the classification and charac-

terization of NTL by leveraging consumer energy consumption data. The classification

method utilizes this data, from segmentation to the application of classifiers, incorporat-

ing temporal dynamics across preprocessing, training, testing, and validation phases to

ensure a thorough time-series analysis. To characterize energy fraud, we employ Informa-

tion Theory Quantifiers (ITQ) in a structured three-stage process. Initially, we transform

the electricity consumption TS into a detailed histogram via the non-parametric Bandt-

Pompe (BP) method [15], capturing causal time information. Subsequently, we extract

critical metrics from this histogram—Fisher Information (FI) , Statistical Complexity

(SC) , and Permutation Entropy (PE) to serve as our analytical framework. These met-

rics are then plotted on the Complexity-Entropy Causality Plane (CECP) [16] and the FS

Plane, where their positions reveal various canonical states indicative of potential fraud.

Validated with a comprehensive dataset from the Irish Smart Metering Energy Project

[12], which includes over 5,000 private and commercial electricity consumers, our method-

ology promises to advance the detection and understanding of NTL significantly, offering

a strategic advantage in combating energy fraud.

• Develop two distinct algorithms: one for classifying and another for characterizing

NTL, employing advanced data analysis methods to identify and distinguish types

of NTL in energy consumption data.

• Define the type of NTL for each user: Use the developed algorithms to analyze

energy consumption patterns of users, enabling accurate identification of the type of

NTL associated with each case, thereby facilitating the implementation of targeted

corrective measures.

• Develop and apply these techniques in SM scenarios: Adapt and optimize the al-

gorithms for application on data obtained from SMs, aiming for effective detection

of NTL in real-world environments and promoting more efficient energy resource

management.

1.5 Contributions

Our main contributions can be summarized in:

• The ensemble considers different Time Series Classifiers (TSC) to create an en-

semble predictor, Time Series Forest (TSF) , Catch22, Weasel, k-NN for TS, and

Arsenal. After training, the generated predictor classifies new data into thirteen
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classes (either honest or one of twelve different types of fraud), which facilitates the

development of methods to improve the detection of specific types of fraud.

• Summarizing the ITQ contributions: (i) Our work characterizes fraud cases using

quantifiers derived from information theory. (ii) We used FI, SC, and permutation

entropy to characterize frauds in SG scenarios with little data.

• We evaluate ensemble performance using smart energy data from the Irish Smart

Energy Trial [17], which consists of approximately 4700 users with 535 days of sample

data. Following the approach of existing work, we add twelve fraud types already

defined in the literature to create a synthetic dataset of honest and fraudulent

customers and randomly select the amount of fraud data generated among users.

1.6 Text Organization

This text presents the fundamentals of this research based on related works, the

main milestones already achieved with the published paper, and the planned advances for

future research works. The remaining of this document is structured as follows:

• Chapter 2: Describes the basic concepts of energy losses, frauds, the users used, ML

techniques, and ITQ in SG scenarios.

• Chapter 3: Shows the state-of-the-art regarding this thesis proposal. The chapter

divides the works into different categories and evaluates them with the proposal.

• Chapter 4: Details all aspects and techniques to evaluate ensemble learning, with

all the parameters and metrics used in the classification model.

• Chapter 5: Details all characterization aspects of ITQ techniques and how we per-

formed the evaluation and achieved the results.

• Chapter 6: Concludes the thesis proposal, suggests future works and presents the

published works associated with this research.
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CHAPTER 2

Basic Concepts

This chapter presents some main concepts about electric power system fraud,

ensemble learning, ML techniques, and information theory used within real SG scenarios

to identify fraudulent users.

2.1 Smart Meters

SMs represent a significant advancement in digital metering technology, capable

of measuring the consumption of electricity, gas, or water in real time or at brief intervals.

These devices then communicate this data to the utility provider for efficient monitoring

and billing. Contrary to traditional meters, which necessitate manual readings, SMs

automate the process of data transmission to the utility company. This automation

facilitates more accurate billing and offers consumers and utilities detailed insights into

consumption patterns [18]. The primary attributes of SMs include:

1. Real-time Data Collection: SMs are adept at collecting usage data at frequent

intervals, potentially as often as every hour or more. This capability ensures a

granular understanding of consumer energy or water usage patterns.

2. Remote Communication: Utilizing wireless technology, these meters transmit infor-

mation directly to the utility provider, obviating the need for manual meter readings

and enabling the implementation of dynamic pricing schemes based on time of use.

3. User Insight: Through online platforms or in-home displays, consumers gain ac-

cess to their usage data, empowering them to identify and exploit energy or water

conservation opportunities by adjusting their consumption behaviors.
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4. Outage Detection: SMs provide utility providers with immediate alerts regarding

power outages and other pertinent issues, enhancing the efficiency of repair and

service restoration efforts.

5. Support for Renewable Energy: These meters play a crucial role in integrating

renewable energy sources, like solar panels, into the grid by precisely tracking the

energy produced and consumed.

The benefits of implementing SMs are manifold:

1. Enhanced Energy Efficiency: SMs promote energy and water conservation among

consumers and businesses, potentially yielding cost savings and diminishing envi-

ronmental impacts.

2. Superior Customer Service: The detailed consumption data furnished by SMs en-

ables utilities to offer personalized advice, dynamic pricing models, and improved

customer service, including expedited problem resolution.

3. Optimized Grid Management: For utility providers, SMs are instrumental in improv-

ing demand forecasting, load management, and distribution planning, contributing

to a more reliable and efficient energy supply.

4. Smart Grid Enablement: As foundational technologies forSGs, SMs facilitate the

creation of electricity networks that leverage digital technology to manage and re-

spond to the behavior of all participants (consumers and producers) more effectively.

Challenges and Considerations: Despite the myriad benefits, deploying SMs has

its challenges, including concerns regarding privacy, data security, and the potential for

unauthorized access. The comprehensive consumption data gathered by SMs can inadver-

tently expose detailed information about a household’s habits and behaviors, underscoring

the necessity for stringent data protection measures [1]. Furthermore, the initial invest-

ment required for SM deployment and the imperative for public acceptance and trust

constitute significant considerations for utility providers. Nonetheless, the global adop-

tion of SMs is on an upward trajectory, propelled by the objectives of enhancing energy

efficiency, integrating renewable energy sources, and modernizing utility services overall.

2.2 Ensemble Learning

Ensemble learning represents an advanced ML paradigm that trains multiple

models, often called ”weak learners,” to address the same problem and combine them to

achieve superior results. The core principle of ensemble learning asserts that by aggre-

gating multiple models, the ensemble achieves higher accuracy and better generalization

performance than any single model could independently [18]. This approach effectively

reduces errors that variance, bias, or noise in the training data causes. Ensemble learning

employs several key methods and techniques, including:
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1. Bagging Bagging (Bootstrap Aggregating): This method involves training multiple

models on unique subsets of the training dataset, created by randomly sampling the

original dataset with replacement. The final prediction usually represents the aver-

age of all predictions (in regression problems) or the majority vote (in classification

problems). Random Forests exemplify the bagging approach.

2. Boosting: Boosting algorithms sequentially train a series of weak models, with each

new model addressing the shortcomings of its predecessors. The strategy emphasizes

giving more weight to training instances that previous models in the sequence mis-

classified. The final model bases its predictions on a weighted sum of the predictions

from earlier models. AdaBoost, Gradient Boosting, and XGBoost are examples of

boosting algorithms.

3. Stacking (Stacked Generalization): This method trains a new model to combine the

predictions of several existing models. After training the original models on the

whole dataset, it trains a new model to make the final prediction based on these

models’ predictions. This second-level model can adjust for the individual base

models’ biases.

4. Voting: Voting ensembles train multiple models independently and combine their

predictions through a simple majority vote (for classification) or averaging (for re-

gression). This method allows using different model types, leveraging the strengths

of diverse approaches.

Ensemble methods have proven effective across various domains, including com-

petition platforms like Kaggle, where they frequently win competitions and in real-world

applications, from disease prediction to financial forecasting. The main advantage of en-

semble learning is its ability to improve prediction accuracy and robustness beyond single

models, making it a powerful tool in ML techniques.

2.3 Technical Losses

Technical losses in electrical power systems intrinsically manifest during the trans-

mission and distribution processes due to the inherent inefficiency of electrical components

and the physical properties of conductors. Utility companies and system operators express

significant concern over these losses because they diminish the overall efficiency of power

systems, elevate operating costs, and necessitate increased generation capacities to ful-

fill consumer demand. This text explores the nature, causes, and mitigation strategies of

technical losses, offering a comprehensive overview for academic and industry stakeholders

[1].

Primarily, one can categorize technical losses in power systems into transmis-

sion and distribution losses. Electricity incurs transmission losses as it travels over long
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distances from power plants to substations through high-voltage transmission lines. Con-

versely, distribution losses manifest within the lower voltage networks responsible for

distributing electricity from substations to end consumers. The resistance in electrical

conductors mainly drives these losses, converting electrical energy into heat in a process

described by Joule’s law.

1. Resistance in Conductors: The resistance found in transmission and distribution

lines emerges as the primary cause of technical losses. These losses, proportional to

the current squared flowing through the conductor, become significant in networks

with high load demand.

2. Transformer Losses: Transformers play a pivotal role in adjusting voltage levels for

efficient transmission and safe distribution, contributing to technical losses. These

losses comprise core losses, attributed to the magnetization and demagnetization

of the transformer core, and copper losses, stemming from the resistance in the

windings.

3. Reactive Power Losses: Necessary for maintaining voltage levels and the operation

of certain loads, the transmission of reactive power incurs technical losses. These

losses relate to the phase difference between voltage and current in AC systems.

Addressing technical losses is imperative for enhancing the efficiency of power

systems and curtailing operational costs. Strategies to mitigate technical losses include:

1. Network Configuration: By optimizing the design and configuration of transmission

and distribution networks, one can minimize the distances electricity must travel,

thereby reducing losses.

2. Conductor Size and Material: Employing conductors with lower resistance levels,

such as high-capacity aluminum or aluminum alloy conductors, facilitates loss re-

duction. Furthermore, enlarging the cross-sectional area of conductors diminishes

resistance.

3. Voltage Level Optimization: Conducting operations at higher voltage levels de-

creases the current required for the same power transfer, thus reducing conductor

resistance losses.

4. Advanced Technologies: The integration of advanced technologies like high-temperature

superconductors (HTS) and gas-insulated lines (GIL) can markedly diminish tech-

nical losses. However, the high costs of these technologies often limit their usage to

selective applications.

5. Reactive Power Compensation: The strategic installation of capacitors and reactors

can minimize reactive power flow and its associated losses.
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6. Regular Maintenance: Ensuring regular maintenance of electrical equipment, in-

cluding transformers and conductors, optimizes performance and minimizes losses.

Technical losses, an unavoidable aspect of transmitting and distributing electrical

power, significantly improve in efficiency with careful planning, technological innovation,

and strategic investment. Reducing technical losses not only enhances power system

efficiency but also aids in energy conservation and economic savings. With the growing

demand for electricity, the critical focus on addressing technical losses is ever-increasing,

underscoring its importance in the energy sector.

2.4 Frauds

Frauds within the electrical system encompass a spectrum of illicit activities that

culminate in the unauthorized utilization or distribution of electricity. These activities

span from meter tampering, aimed at underreporting electricity usage, to intricate strate-

gies devised to circumvent or manipulate billing systems [3]. The ramifications of such

frauds are profound, precipitating financial deficits for utility corporations, escalated costs

for law-abiding consumers, and safety hazards due to improperly established electrical

connections and usage. The spectrum of fraud in the electrical system encompasses, but

is not limited to:

1. Meter Tampering: Individuals may engage in the physical alteration of electricity

meters or their connections, employ magnets to decelerate the recording mechanism,

or infiltrate SMs to modify digital records, thereby reducing the reported energy

consumption.

2. Bypassing Meters: Certain individuals opt for direct connections to the power grid,

bypassing meters altogether. This action results in electricity usage that remains

unrecorded by the meter, rendering the utility company unable to charge for the

actual consumption.

3. Billing Fraud: This category involves altering billing records or account details to

decrease the amount payable. Tactics include falsifying meter readings, transferring

debts to another account, or establishing phantom accounts with lower tariffs.

4. Illegal Resale: Offenders may illicitly connect to the electrical grid and resell access

to electricity at discounted rates to neighbors or businesses, thereby accruing profits

without remunerating the utility company for the electricity consumed.

5. Theft of Services: This broad classification encompasses unauthorized access to

electrical services, such as tapping into streetlights, public utility connections, or

other power sources without authorization.



2.5 Machine Learning Classifiers 23

Addressing these frauds necessitates a multifaceted approach comprising tech-

nological interventions, legislative actions, and initiatives to raise public consciousness.

The deployment of SMs, capable of real-time electricity usage reporting and detecting

anomalous consumption patterns, has posed challenges for individuals attempting meter

tampering or bypassing. Furthermore, utility corporations increasingly resort to sophisti-

cated software for analyzing consumption patterns to pinpoint potential fraud. Legislative

actions have intensified penalties for electricity theft and tampering. Concurrently, cam-

paigns to heighten public awareness aim to illuminate electricity fraud’s financial and

safety implications, including the risk of electrical fires and other hazards. In summa-

tion, fraud in the electrical system represents a obstacle for both utility providers and

consumers, necessitating relentless endeavors to unearth, thwart, and penalize illicit elec-

tricity consumption practices.

2.5 Machine Learning Classifiers

ML classifiers categorize data into distinct classes or categories based on data

features. These algorithms form a fundamental part of supervised learning, aiming to

learn a model from labeled training data to predict unseen data. We can use classifiers

for various applications, including spam detection, image recognition, medical diagnosis,

and more [19]. This thesis utilizes several ML classifiers:

2.5.1 Signature

The (generalized) signature method results from a unifying framework that col-

lects different feature extraction techniques for multivariate time series equations. The

collection employs augmentations, windows, transformation, and rescaling, all grouped in

a single mathematical framework.

2.5.2 22 Canonical Time-series Characteristics

22 Canonical Time-series Characteristics (catch22) is a dynamic and commonly

used technique for time series data. Catch22 captures time series’ diverse and interpretable

characteristics according to their properties, including linear and nonlinear autocorrela-

tion, continuous differences, value distributions, outliers, and volatility scaling properties

[20]. This technique utilizes a reduction in dimensionality from 4791 to 22, correlates with

a roughly 1000-fold decrease in computation time, and scales almost linearly with time

series length, despite an average 7% reduction in classification accuracy.
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2.5.3 Weasel

The word extraction for time-series classification is a TSC method that is scal-

able and accurate. Weasel has considered the differences between classes in the feature

discretization process rather than relying on fixed, data-independent intervals; this results

in a highly discriminatory feature set. Weasel does not treat each fixed-length window as

an independent feature but uses windows of different lengths and considers the windows’

order. Weasel applies aggressive statistical feature selection instead of simply using all

features for classification; this results in smaller function space and dramatically reduces

runtime without sacrificing accuracy [21].

2.5.4 Time Series Forest

The tree-ensemble classifier, Time Series Forest (TSF), introduces a novel mea-

sure known as Entrance (Entropy and distance) gain for identifying high-quality splits,

incorporating entropy gain and employing two One-nearest-neighbor algorithms with dy-

namic time warping (Xi et al., 2006). TSF adopts a random feature sampling strategy,

achieving linear computational complexity relative to the time series length. TSF pro-

poses addressing challenges with two main strategies. First, it introduces a new splitting

criterion, the Entrance gain, which merges the entropy gain with a distance measure

for pinpointing high-quality splits. Experimental studies across 45 benchmark datasets

have demonstrated that the Entrance gain significantly enhances TSF’s accuracy. Second,

by randomly sampling features, TSF maintains linear computational complexity about

the time series length. Moreover, TSF independently grows each tree, allowing modern

parallel computing techniques to accelerate the process [22].

2.5.5 k-Nearest Neighbour for Time Series

The importance of interpretation and insight makes k-Nearest Neighbour (k-NN)

methods stand out in data analysis. Because k-NN methods provide transparency, they

produce interpretable models. This transparency is also crucial in time series analysis,

where comparing time series side by side can highlight similarities and differences be-

tween methodologies. However, using k-NN methods for time series analysis introduces

additional challenges in developing metrics that accurately capture the similarity between

time series. Even if one time series stretches or shifts relative to another, the two can still

be similar. The similarity might also rely on short or even tiny signatures within the time

series[23].

2.5.6 Support Vector Machine

Support Vector Machine (SVM) is a classic supervised ML technique that uses a

convex optimization algorithm to maximize the distance (margins) between two categories.
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In other words, it tries to predict the correct category for each data successfully.

2.5.7 Extreme Gradient Boosting

Extreme Gradient (XGBoost) Boosting is one of the most important ensembles

that use gradient boosting techniques. Such a boosting technique increases the influence

of high-performing models sequentially using successive weak learners, and the gradient

tries to minimize errors in these sequential models. XGBoost goes further with this

strategy by employing level-wise (depth-first) parallel trees gradient boosting processing,

tree-pruning, and regularization method to avoid overfitting.

2.5.8 CatBoost

Catboost uses the gradient boosting method, which works well with categorical

features by creating symmetrical decision trees using permutation. Therefore, it is ideal

for data from different sources. Its ensemble enables good results with few preparations

(parameter tuning) and few Algorithm runs, in opposition to long-running deep learning

models.

2.5.9 LightGBM

Light Gradient Boosting Machine (also known as LightBoost) uses the gradient

boosting method on decision trees by employing leaf-wise (best-first) decision, focusing

only on the leaf to carry the maximum gain and minimum loss. Therefore, with this

implementation, the LightBoost technique was designed to be more efficient and quicker

using a larger gradient during training tests.

2.5.10 Arsenal

An ensemble of Rocket transformers employs a Ridge classifier with built-in cross-

validation. Rocket (Random Convolutional Kernel Transform) transforms time series us-

ing numerous random convolution kernels, including kernels with random lengths, weights,

warping, dilation, and padding. A linear classifier then learns from the transformed fea-

tures. The combination of Rocket and logistic regression creates a single-layer convolu-

tional neural network with random kernel weights, with the transformed features feeding

into the trained softmax layer. However, this ensemble applies a ridge regression clas-

sifier to all but the largest datasets, offering the advantage of rapid cross-validation on

the regularization hyperparameters without affecting other hyperparameters. However,

logistic regression, trained with stochastic gradient descent, scales better. For extensive

datasets, logistic regression becomes the method of choice when the training sample size

significantly exceeds the number of features. [24].
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Each of these classifiers has its strengths and weaknesses and is chosen based

on the specific characteristics of the data and the task at hand. The choice of classifier

can depend on several factors, including the size and dimensionality of the dataset, the

linearity of the decision boundary, and the computational efficiency required.

Conventional ML models often perform sub-optimally because they present high

bias, such as a low degree of freedom classifiers or high variance [25]. Thus, in ensemble

learning, multiple predictors (often called ”weak learners” or ”basic models”) are trained

to solve the same problem [26]. An ensemble predictor builds a more robust predictor

with better results than single-classifier predictors. Hence, an ensemble predictor reduces

the bias and/or variance of basic classifiers by combining several to create an aggregated

learner (or ensemble predictor) that achieves better performances [19].

We consider a voting class classifier for the ensemble predictor, combining differ-

ent ML classifiers conceptually. The voting classifier accounts for every classifier’s vote

for each returned class. As a result, the final classification can be decided either by a ma-

jority vote (hard voting) or by the mean value of the individual probabilities produced by

every classifier (soft voting). In soft voting, each classifier evaluates a sample’s matching

probability for every class. The sum of all probabilities will always be 1. After all, clas-

sifiers calculate the probabilities, and soft voting finds the weighted mean of each class’s

probability and establishes the class’s final prediction with the highest mean value. It

might apply weight to prioritize a particular classifier over others.

2.6 Information Theory Quantifiers

Information theory is a branch of applied mathematics and electrical engineering

involving the quantification of information. Developed by Claude Shannon [27] in the

mid-20th century, it provides a mathematical framework for understanding information

transmission, processing, and storage. Central to information theory are several key

quantifiers that measure different aspects of information. Here are the primary concepts:

1. Entropy (H): Entropy measures the unpredictability or uncertainty of a random

variable. It quantifies the average amount of information produced by a stochastic

data source. For a discrete random variable X with possible values x1, x2, . . . , xn

and probability mass function P (X), the entropy H(X) is defined as:

H(X) = −
n∑

i=1

P (xi) logb P (xi) (2.1)

Where b is the base of the logarithm used, in information theory, b is often 2 (bits)

but can also be e (nats) or 10 (digits).

2. Conditional Entropy (H(X—Y)): Conditional entropy measures the average amount
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of information needed to describe the outcome of a random variable X given that

the value of another random variable Y is known. It quantifies the uncertainty

remaining about X when Y is known.

3. Joint Entropy (H(X, Y)): Joint entropy of two random variables X and Y measures

the uncertainty associated with the joint distribution of X and Y . It quantifies the

total information needed to describe X and Y simultaneously.

4. Mutual Information (I(X; Y)): Mutual information measures the amount of infor-

mation one random variable contains about another. It quantifies the reduction in

uncertainty about X due to the knowledge of Y and is symmetric, meaning that

I(X;Y ) = I(Y ;X). It is defined as the difference between the entropy of X and

the conditional entropy of X given Y :

I(X;Y ) = H(X)−H(XY ) (2.2)

5. Kullback-Leibler Divergence (DKL(P ||Q)): Also known as relative entropy, the

Kullback-Leibler divergence is a measure of how one probability distribution P

diverges from a second, expected probability distribution Q. Though it is often re-

ferred to as a distance measure, it is not symmetric and does not satisfy the triangle

inequality. It is defined for discrete variables as:

DKL(P∥Q) =
∑
i

P (xi) log
P (xi)

Q (xi)
(2.3)

6. Cross Entropy: Cross entropy measures the average number of bits needed to encode

data from one distribution using the optimal code for another distribution. ML often

uses it to define the loss function for classification problems.

These quantifiers are foundational in various fields, including communications,

data compression, ML, and cryptography, helping to optimize processes and algorithms

by quantifying how much and how efficiently information is encoded, transmitted, and

decoded.

2.7 Chapter Conclusions

This chapter described the main basic concepts of the theoretical approach pro-

posal. Given the complexity of the scenario, we can improve fraud detection and data

handling in the electric power system and achieve deception with high reliability and

security with low data usage.
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CHAPTER 3

Related Works

This chapter presents the state-of-the-art regarding fraud, NTL scenarios, and

algorithms we use to identify or classify NTL in SG scenarios, such as ML and ITQ

models, algorithms, and techniques. Our proposal approaches some influences and similar

concepts as some of the related works but also considers other innovative questions.

3.1 Related Works

Gunturi et al. [1] proposed an energy theft detector based on ensemble classifiers,

which uses real-time data from SMs to analyze trends in user consumption behavior. The

proposal uses the Synthetic Minority Over-sampling Technique (SMOTE) to balance the

minority class data and generate synthetic fraud data using the same work fraud case.

The authors used six ensemble algorithms to classify users, including ADaptive Boosting

(ADB) , CATegorical boosting (CAT) , extreme gradient Boosting (XGB) , Light Gradient

Boosting (LGB) , Random Forest(RF) , and Extra Trees (ET) . They used an ensemble

machine learning (ML) classifier-based energy theft detector that uses real-time SM data

to study consumer usage behavior trends—the proposed model for finding energy theft

in SGs. Theft can occur at any level of the system. In this work, we assume that SMs

are installed across all consumers. It did not consider the time series of the data when

separating the training and testing. In addition, this work did not use any time series

classifier to compare with their work.

Passos Júnior et al. [28] propose evaluating optimum-path forest (OPF) clustering

for non-technical losses. Utilize two private datasets a Brazilian electrical power company

provided: one composed of commercial profiles and another managed to find industrial

consumers. Another main contribution of this paper is to model the problem of non-

technical loss identification as an anomaly detection task. The classifier is trained with
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regular consumers only.

Barja-Martinez et al. [29] proposed a holistic analysis of AI applications in dis-

tribution power systems after identifying and classifying the different data-driven tech-

niques for power systems and the data sources involved in the data acquisition. These

applications include operation and monitoring, predictive maintenance, non-technical loss

detection, forecasting, flexibility management, and planning of distribution grids.

Jokar, Arianpoo, and Leung [11] proposed a consumption pattern-based energy

theft detector. This detector uses a Support Vector Machine (SVM) classifier to analyze

each user’s samples and classify them as honest or fraudulent. However, the results ob-

tained differed from other ML algorithms that performed better. Punmiya and Choe [30]

consider three state-of-the-art gradient boosting algorithms, namely XGBoost, catBoost,

and LightBoost, for NTL detection. The detector shows significantly better false posi-

tive rate performance compared to related methods. However, the authors did not use

techniques to select hyperparameters for the classifier, nor did they use cross-validation

techniques to split the data.

Bastos et al. [31] proposed a data-oriented ensemble predictor based on time

series classifiers (TSC) for NTL detection called DETECT. The proposed predictor is

time-series-oriented, from how the data is split to implementing the classifiers. DETECT

considers an ensemble predictor of five TSC algorithms, namely, Time Series Forest (TSF),

Residual Network (ResNet) , Inception Time, Time Le-Net (t-LeNet) , and Multi-Channel

Deep Convolutional Neural Network (MCDCNN) . However, this work does not deal

with all fraud models currently cataloged in the literature and does not perform well for

different types of fraud, in addition to not worrying about data processing time.

Jindal et al. [32] developed a method to identify NTLs in the grid’s transmission

and distribution levels. At the distribution level, the identification process consists of

a DT algorithm paired with a Support vector machines (SVM) algorithm. The SVM

classifies users according to their consumption patterns, while the Decision Tree (DT)

estimates the energy consumption for each user based on the temperature, number of

people living in residence, number of electrical appliances, time of the day, season, and

so on. However, privacy concerns arise from its extensive use of user data as input to the

SVM.

Punmiya and Choe [30] proposed an exhaustive analysis comparing the three most

recent Gradient Boosting Classifiers (GBCs) : Extreme Gradient Boosting (XGBoost) ,

Categorical Boosting (CatBoost) , and Light Gradient Boosting Method (LightGBM) .

This study aims to develop a Gradient Boosting Theft Detector (GBTD) that incorpo-

rates these GBCs, featuring a preprocessing module designed through feature engineering

to enhance the detection rate (DR) , lower the false positive rate (FPR) , and optimize

time complexity. Within the GBTD classifiers, the preprocessing component includes

a stochastic feature generation function that betters the FPR and the DR by leverag-

ing combinations of daily electricity consumption figures as attributes. Moreover, this

module incorporates a feature extraction mechanism employing Weighted Feature Im-
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portance (WFI), which significantly diminishes training time complexity by eliminating

non-essential attributes (noise) from the consumer’s data set, thereby also contributing

to a reduction in storage requirements for consumer information in SG.

Messinis, Rigas, and Hatziargyriou [33] proposed a hybrid method for NTL de-

tection composed of three blocks that can include more types of fraud. The first block,

or module, performs feature extraction from time-series consumption data and trains an

SVM classifier to identify NTL. The second module calculates network self-sensibility

tension based on meter data and compares it to theoretical values obtained with the net-

work topology. The third module solves an optimization problem whose objective is to

minimize losses. Although this method is hybrid and novel, it requires data that is often

unavailable, as was the case in this study, which involved generating the data used for

validation.

Souza et al. [34] proposed a method to detect and identify electrical energy

theft in distribution systems. This method integrates a system of static state estimation

(SSE) and phasor measurement unit (PMU) techniques at the beginning and end of the

feeders. They compare the SSE results with the total consumption reported by SMs.

If the discrepancy exceeds 10%, they scrutinize all customers connected to that feeder,

classifying them as honest or fraudulent. To facilitate this, they employed Self-Organizing

Maps (SOM) to group users with similar consumption patterns and used a Multilayer

Perceptron Artificial Neural Network (MP-ANN) for the final user classification. Although

this method yielded satisfactory outcomes, it could have benefited from a more robust

data validation technique, such as cross-validation, and did not explore the use of Time

Series Classification (TSC).

Aoufi et al. [35] proposed the necessity of detecting energy theft through the

precise identification of SM data manipulations, emphasizing the critical role of data in-

tegrity in power dispatching and dynamic pricing. They further highlight the importance

of swift detection times, given the real-time transmission of SM data. They acknowledge

that while statistical models, such as ARIMA, offer advantages in execution speed over

machine learning and deep learning models, their accuracy may need to be improved.

Building on this insight, we introduce a hybrid energy theft detection system that inte-

grates one forecasting-based statistical model with two forecasting-based deep learning

models to enhance the accuracy and efficiency of energy theft detection.

Zheng et al. [8] introduced an electricity theft detection system that processes

each piece of consumption data through two components: (a) a Wide CNN, featuring

a fully connected layer, and (b) a Deep CNN, comprising multiple convolutional lay-

ers. They combine the outputs of these two components using the Sigmoid function to

determine whether the consumption values indicate normal usage or an attack.

Ahir and Chakraborty [36] introduced a pattern-based and context-aware method-

ology for detecting energy theft, distinguishing multiple electricity usage patterns for each

user according to the calendar context, including weekdays, weekends, seasonal variations,

holidays, and specific blocks of hours within a day. They combined the k-NN algorithm
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and Dynamic Time Warping (DTW) to uncover the relationships between different con-

sumption patterns. They tested their approach using a dataset provided by the Calcutta

Electric Supply Corporation (CESC).

Hasan et al. [37] proposed a binary classification model that integrates both

Convolutional Neural Networks (CNN) and Long Short-Term Memory (LSTM) models.

They trained and tested this model using the SGCC dataset, which features significantly

fewer malicious data instances than normal ones. To counteract this imbalance and pre-

vent biased classification, they applied the Synthetic Minority Over-sampling Technique

(SMOTE).

Adeli et al. [38] proposed using an optimization algorithm to fine-tune the pa-

rameters of detectors. This algorithm aims to enhance the performance of SMO-based

attack detectors by minimizing the discrepancies between actual attacks and estimated

attack signals, reducing attack detection times, and improving the accuracy of attack

detection. Adjusting detector parameters considers the possibility of unknown attacks,

treating the attack vectors as random variables within the optimization process. As a

result, the nature of the optimization problem evolves. To navigate this complexity, Adeli

employs a differential evolution algorithm for the dynamic adjustment of parameters in

the SMO-based attack detection method. It is important to note that, in contrast to

learning-based attack detection algorithms, which adjust parameters in a real-time or on-

line manner, the parameter adjustment for the SMO-based attack detector occurs offline.

This offline adjustment enables its application in real-time attack detection scenarios.

Zidi et al. [39] proposed an approach for automating theft detection by applying

data analysis techniques. This method leverages energy consumption data from various

consumers, applying and comparing multiple machine learning techniques to identify and

detect abnormal consumption behaviors. Zidi and their team designed an effective theft

generator to facilitate the analysis of energy consumption behavior in SG environments.

They introduced a multi-class theft detection dataset to evaluate classifier performance

and serve as a benchmark. The team developed an intelligent autonomous detection

system capable of identifying six distinct types of theft. Furthermore, they conducted

extensive simulations to characterize the performance of five different machine learning

techniques: K-Nearest Neighbors (KNN), Decision Trees (DT), Random Forest (RF),

Bagging, and Artificial Neural Networks (ANN).

Xia et al. [40] proposed a hybrid method enhanced by innovative concepts to

refine the model to better align with real-world power grid conditions and augment de-

tection accuracy. This approach involves focal loss during model training to amplify the

influence of a limited number of samples on model optimization. Furthermore, Xia im-

plemented a channel-dimensional adaptive attention module to intelligently combine the

feature expressions derived from both broad and deep Convolutional Neural Networks

(CNNs), thereby improving the precision of model training.
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3.2 Chapter Conclusions

Table 1 summarizes the main characteristics of previous works aimed at NTL

detection in terms of the split for time series, ML algorithms employed, ensemble predictor

considered, data used for NTL prediction, TSC, several output classes for NTL prediction,

and characterization based on ITQ. Another contribution of this thesis is the formation of

a whole. Firstly, the ensemble is more heterogeneous, connecting different TSC types for

the classification of different classes to classify the parameters and properties found in the

user class. Secondly, it shows that a single classifier has many application dependencies,

as they are limited to classifying binary files and cannot accurately classify different

classes, and also do not perform characterization of users with similar characteristics. NTL

detection remains a challenge, and to our knowledge, no literature studies characterize

fraud from the user’s energy consumption based on heterogeneous classifier and ITQ. In

this context, developing methods that compare different ML algorithms and maintain the

temporal dependence of the data is paramount in providing results that better reflect

real-life scenarios.

Table 1: Summary of Related Work.

Works
Split for
Time Series

Techniques
Ensemble
Predictor

Data Type TSC
Number Of
Classes

Gunturi et al. [1] No
RF, ET, CAT
XGB, ADB, LGB

Yes Electricity Consumption No 2

Passos Júnior et al. [28] No
OPF, k-Means, GMM,
AP, Birch, SVM

No Electricity Consumption No 2

Barja-Martinez et al. [29] No
Correlation, DT, LR,
LogR, MLP, DNN

No

Operational Data,
Weather Data,
Electricity Consumption,
Social Media, GIS,
Customer behavior data

No 2

Jindal et al. [32] No SVM, Decision Tree No Electricity Consumption No 2

Bastos et al. [31] Yes

SVM, CatBoost, XGBoost,
LightBoost, TSF, ResNet,
Inception, TLENERT,
MCDCNN and Detect

Yes Electricity Consumption Yes 7

Jokar, Arianpoo and Leung. [11] No SVM No Electricity Consumption No 2

Punmiya and Choe [30] No
XGBoost, CatBoost,
LightBoost

No Electricity Consumption No 2

Messinis, Rigas and Hatz. [33] No SVM No Electricity Consumption Yes 2

Souza [34] No
SSE, PMU,
SOM and MPANN

No Electricity Consumption Yes 2

Aoufi et al. [35] Yes ARIMA No Electricity Consumption Yes 2
Zheng et al. [8] Yes CNN and Deep CNN No Electricity Consumption Yes 2
Ahir and Chakraborty [36] Yes K-NN and DTW No Electricity Consumption Yes 2

Hasan et al. [37] No
XGBoost, CatBoost,
LightBoost

No Electricity Consumption No 2

Adeli et al. [38] Yes SMO-based attack No Electricity Consumption No 2

Zidi et al. [39] Yes
KNN, DT, RF,
RF ANN

Yes Electricity Consumption Yes 6

Xia et al. [40] No CNN No Electricity Consumption No 2

The Algorithm Yes

Signature, CatBoost,
XGBoost, LightBGM,
TSF, Weasel,
ROCKET, SVM,
Catch22, k-NN
and HybridForest

Yes Electricity Consumption Yes 13
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CHAPTER 4

Classifier of Fraud Detection and Ensemble

Machine Learning Mode for NTL in

Data-oriented

This chapter presents the classification of frauds based on ensemble learning, the

results achieved with the classifier evaluation, the techniques chosen, the amount of data

used, and the conclusions we obtained. The ensemble is composed of ML techniques

that can better define users for each type of fraud, thus having better results for a more

heterogeneous dataset, resulting in a scenario closer to reality where users are different.

From this, we demonstrate our results and verify other more straightforward techniques,

considering a more realistic model.

4.1 Performance Evaluation

This section describes the methodology and performance metrics used to evaluate

the predictors for NTL detection. We compared the performance results obtained with

the Algorithm with other TSC and non-TSC ML algorithms. We used the following per-

formance metrics: Precision, F1-score, Accuracy, False Positive Rate (FPR), and Recall

to evaluate the effectiveness of the Ensemble algorithm.

Figure 1 presents an overview of our Ensemble Algorithm, which considers user

energy consumption as the data input for classification. The Algorithm relies on an

ensemble predictor of five of the most recent TSC classifiers. Once trained, the resulting

predictor outputs the category to which each sample belongs, either benign or one of the

twelve types of fraud. The Algorithm consists of three main functions: i) generation of

fraud data, ii) data pre-processing, and iii) training using the ensemble predictor based
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on TSC.
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Figure 1: Overview

Finding public records with honest and fraudulent user labels for data classi-

fication is difficult. In this sense, we use consumption data obtained in continuously

monitored scenarios. Participants accepted the terms of commitment to install SM in

their homes. It is a reasonable assumption that all samples belong to honest users [41].

To cope with this issue, we consider the Irish smart energy dataset [17], a widely used

dataset for SG scenarios. The Irish dataset contains the consumption data of 4710 domes-

tic and commercial clients and 535 days of readings collected in Ireland between 2009 and

2010, enabling validation of the fraud detection method in a large-scale scenario. This

dataset considers Intelligent Electronic Devices (IEDs) registering consumption readings

every half hour, where the first reading corresponds to the interval between 0h0min0s and

0h 29min 59s, and the second reading corresponds to the interval between 0h 30min 0s

and 0h 59min 59s and so forth. Thus, every day is composed of 48 sequential readings,

i.e., , sample n of vector EC equals 48.

4.1.1 Generation of Fraudulent Data

The generation of fraud data phase starts with the load of the vector with real

daily consumption readings. Afterward, we need to clean the data to find errors or null

values in the dataset, detect outliers, and transform them into acceptable types using

scale-changer methods [1]. For instance, the number of samples must be the same for

each daily vector EC since some classifiers can not handle different length time series.

Hence, we drop daily vectors without the expected samples, as those could represent

failures in the SG, meaning non-reliable information. This step represents a reduction of

only 1% in the original number of daily vectors and does not represent a significant loss

of information.
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The organization of the Irish dataset features four columns: the id column for

unique user identification within the dataset, the day column to mark the date of each

measurement, the measurement column to denote each of the 48 daily samples, and the

consumption column to log the energy consumption for each day. To facilitate fraud

detection, it becomes necessary to reorganize these readings into daily vectors. In this

structure, each row corresponds to a day’s worth of readings, with columns reflecting the

consumption values for each measured interval. This reorganization proves essential for

accurately identifying fraud cases, as it aligns the dataset structure with the requirement

for analyzing daily consumption patterns to detect fraudulent activities. Specifically, each

row contains a time series with samples ranging from 0 to 47, the class label (i.e., , either

zero for regular consumption or a number between 1 and 12 for fraudulent patterns), the

day this data, and the corresponding user.

The dataset exclusively comprises honest consumption data, given its generation

from continuous monitoring of customers who had consented to the terms of the agreement

and completed questionnaires before and after the measurement period. Similar to other

work using the Irish dataset, we also add different types of fraud to generate a synthetic

dataset with honest and fraudulent customers due to the lack of real fraud samples in

the dataset [3]. Specifically, we add twelve fraud types already defined in the literature

for the whole time series, from the first to the last reading, as other works [30, 34, 1]

have also done. In general, frauds report less energy than the actual energy consumed or

redistribute the energy consumption at different times to take advantage of the varying

billing system [1]. It is important to mention that the amount of samples for each fraud

in the dataset is smaller because those classes would be less frequent than the normal

class on a real problem. For instance, the abnormal classes have 25% fewer samples than

the regular class.

These frauds have the same objective of reducing the overall electricity bill. As

attackers have different motives, behaviors, and random energy consumption, producing

NTL frauds that include all behavior of malicious patterns is challenging. This section

discusses various models of synthesized NTL frauds suggested by current works.

1. Fraud: We multiply all the readings xt (electricity consumption in kW per hour)

with the same real pseudo-random number α in a predetermined interval between

min and max values as Eq. (4.1) and Figure 2 show, which can be considered as the

most traditional observed fraud on the SM scenario [9]. Specifically, α values closer

to min mean the higher the severity of the fraud. It is a fraud pattern in which the

user artificially reduces daily consumption continuously (e.g., α value of 0.3 means

that SM reports only 30% of energy consumption) and by the same proportion

between daily measurements [9]. fraud can be called anormal consumption, because

do not follow the correct consumption.

f1(xt) = xt ∗ α, (where α = random.uniform(min,max)) (4.1)

2. Fraud: We multiply each meter reading xt with a different integer random number
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Figure 2: Fraud 1

γt ∈ [0, 1], as Eq. (4.2) and Figure 3 show, also known as an on-off fraud. This

fraud type might indicate the malfunction of an SM or grid infrastructure. It is a

fraud pattern in which readings are either interrupted or canceled for certain times

of the day, i.e., it replaces the consumption samples for zero each day in a random

duration. This fraud can be easily detected, especially after a long period of zero

reporting [9].

f2(xt) = xt ∗ γt, (where γt = randint.uniform(0, 1)) (4.2)
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Figure 3: Fraud 2

3. Fraud: We multiply each meter reading xt by a different real pseudo-random num-

ber βt between min and max values in a predetermined interval, as Eq. (4.3) and

Figure 4 show. Specifically, the fraud level increases as the βt value decrease. This

fraud has a similar equation compared to fraud 1, but the βt value is different for

each sample reported. It means the NTL might not occur continuously, and there

may be some discontinuous reporting of ”fraudulent” values. Therefore, the user



4.1 Performance Evaluation 37

produces different reduction rates across measurements in this fraud pattern.

f3(xt) = xt ∗ βt, (where βt = random.uniform(min,max)) (4.3)
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Figure 4: Fraud 3

4. Fraud: We use the mean values of the readings multiplied by areal pseudo-random

number θt in a predetermined interval between min and max values, as Eq. (4.4) and

Figure 5 show. It represents the average of the readings made over the day with a

continuous reporting of ”fraudulent” values. In this fraud pattern, the user falsifies

the trend and daily consumption, producing a new pattern completely different from

the original one.

f5 (xt) = mean(x)× θt, ( where θt = random(min,max)) (4.4)
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Figure 5: Fraud 4

5. Fraud: We use the mean values of the readings for all measured samples, as Eq.

(4.5) and Figure 6 show, representing the exact average of readings over the day.
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This fraud can be easily detected by analyzing the consumption profile because

a constant consumption does not reflect the average electricity consumption that

needs to change randomly over time [9].

f5 (xt) = mean(xt) (4.5)
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Figure 6: Fraud 5

6. Fraud: Eq. (4.6) and Figure 7 describe a pattern in which the readings have their

chronological order changed, where it does not steal electricity but by shifting high

consumption from peak to off-peak [9]. It is worth noting that frauds 4.5 and 4.6

describe fraud patterns of target systems that bill clients differently according to

the time of the day.

f6 (xt) = xT−t (where T is the sample size per day) (4.6)
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Figure 7: Fraud 6

7. Fraud: This fraud simulates an energy theft that takes place over a certain period

[28, 42]. The duration of the fraud is selected randomly, and all measurements in
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this duration are reduced. The start time and duration of the frauds vary according

to the attackers’ needs. Yet, most attackers reduce their electricity during peak

hours, days, and seasons. Figure 8 shows the variation of fraud 4 and is formulated

by

f4(xt) = γt ∗ xt, γt =

{
α, ts < t < tx

1, else
(4.7)
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Figure 8: Fraud 7

8. Fraud: A random cut-off point (often arises within the context of statistical anal-

ysis, ML algorithms, and decision trees. It refers to a method of dividing data into

subsets based on a threshold value that is chosen randomly. In ensemble learning,

particularly with methods that involve bagging (Bootstrap Aggregating) or boost-

ing, random cut-off points can contribute to creating a diverse set of models. Each

model in the ensemble might use different cut-off points for the same features, lead-

ing to varied decision boundaries. This diversity is beneficial because it allows the

ensemble to cover a broader range of data patterns, making the combined model

more robust and accurate than any single constituent model.) is selected, and all

values of energy consumption above that point are replaced by a cut-off value [43].

For this type of fraud, the attacker does not want to exceed the maximum prede-

fined limit. Consequently, all consumption exceeding the maximum allowable limit

is reduced. The cut-off point should be carefully selected, as a very low cut-off point

may cause the meter to report a series of constant consumption that can be easily

detected. Also, if the cut-off point is too high, the stolen amount will be too low to

benefit the attacker. This fraud is formulated in Eq. 4.8 and Figure 9. Where, α is

cutoff point and α < max(xt).

f6(xt) =

{
xt, xtα

α, xt > α
(4.8)

9. Fraud: In this fraud, a random cut-off point is selected and subtracted from the
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Figure 9: Fraud 8

actual sample [43], as shown in Eq. 4.9 and Figure 10—example of daily variation

of fraud 9. If the result obtained is less than zero, zero is reported. This fraud

may be due to injecting false data or bypassing the meter by connecting the load

directly to the distribution transformer. Thus, the amount consumed by the load is

not recorded by the meter.

f7(xt) = max (xt − α, 0) (4.9)
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Figure 10: Fraud 9

10. Fraud: The authors of [44] proposed this fraud and called it a smart fraud. It

is smart because energy consumption does not decrease abruptly but gradually

decreases until the fraud reaches its maximum intensity. It stays at this point for

the rest of the fraud duration. The gradual decrease is determined by the rate of

change in the intensity of the fraud. Eq. 4.10 a mathematical model, and Figure

11 shows the variation of fraud 10, respectively. Where it is attacked intensity

(0 < it < 1), s, indicates the rate of change in fraud intensity, and t max is the time
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with maximum intensity.

f8(xt) = (1− it)xt, it =


imax,ttmax

s (t− ts) , ts < t < tmax

0, t < ts

(4.10)
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Figure 11: Fraud 10

11. Fraud: In this fraud, energy consumption is reduced only for a specified period,

and the reduced amount is distributed to the remaining times of that day [45].

Thus, the overall consumption for this fraud will remain the same as the actual

consumption, but the billing could be lower if the electricity company uses time-

varying pricing systems. This type of fraud is only valid if there is no fixed pricing

system. Eq. 4.11 and Figure 12 show the mathematical model for fraud 11 and its

variation, respectively. Where, ts is the starting time of the highest consumption n

time period, N is total number of samples, tx = ts + n and ∈=
∑n

j=1 xtt+j−1.

f11(t) =

{
xt − λxt, ts < t < tx
xt + ϵ/N − n, else

(4.11)

12. Fraud: This fraud occurs when an attacker switches their consumption pattern

to a user with a low consumption pattern [45]. Thus, the legitimate user will un-

knowingly pay for the adversary’s electricity. This type of fraud may also occur

when attackers under-report their consumption and, at the same time, over-report

the same proportion to their neighbors [46]. Frauds of this type cannot be easily

suspected and detected. Figure 13 shows the fraud.

f12 = xt = xt ∗ Z (4.12)

Most frauds caused by injecting false data need attackers to have full or partial

network information to modify the meter readings. Besides, attackers need to know
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Figure 12: Fraud 11
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Figure 13: Fraud 12

the trend of real consumption before generating fraud vectors so that frauds can occur

successfully with little chance of being detected by the electricity provider. In some

frauds, attackers should be familiar with the pricing system used to maximize their benefit.

Attackers often need help to gain full access to the SG network. Although there is a low

probability of such frauds, they can not be ignored.

Once the fraud samples are generated, the data is labeled, consisting of n pairs of

input and output values (x1, y1), ..., (xn, yn). Conventional classifiers process time-series

datasets as tabular data; each input value x pertains to a different feature, and features

are selected according to their perceived relevance. Conventional ML classifiers can also

utilize time series for resource extraction, a process in which a specialist analyses a time-

series with filters and other specific techniques and extracts its most relevant predictors.

On the other hand, TSC classifiers process datasets fully, consider their time dependency

and decide which parts are appropriate or not. One of the advantages of using the time

series is the removal of the human component from the process and the elimination of the

resource extraction phase from the pre-processing step. Hence, the Algorithm considers
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the input values x, the entire daily time series, to predict output values y, i.e., the classes

to which the series belongs.

4.1.2 Pre-Processing

Energy consumption data typically appears as a unidimensional time series with

chronologically ordered readings. A critical step in the preprocessing stage involves ad-

justing this data. The algorithm utilizes a time series cross-validation technique to yield

more reliable and robust results. Initially, it divides the data into training and test sets.

Blocking time series then segments the data into n Folds, each designated with specific

training and test sets. Every fold includes an identical number of samples, each divided

sequentially. Subsequently, the algorithm trains classifiers with each training subset, se-

lecting parameters that minimize classification error for each validation set. Finally, it

configures the predictor with the optimal parameters and trains it using the entire training

set. The aggregate performance is the average of the performances across all folds.

The Blocking time series split adds margins in two directions. One margin pre-

vents the classifiers from memorizing future trends, and the other prevents the classifiers

from re-memorizing patterns in between interactions. Despite the increased complexity of

cross-validation, it is indispensable because it makes the predictors more error-resistant.

This application needs to consider time series attributes when splitting data, guarantee

that the predictors learn from past data (training stage), and make predictions about

future data (test stage), making it better at working with real-world scenarios.

After the split, the process normalizes the training sets. Normalization adjusts

all features to a uniform scale, ranging from 0 to 1. This normalization of entries pre-

vents classifiers from favoring features with larger magnitudes, thereby enhancing the

generalization capability of the predictor.

We selected the parameters of the ensemble learning grid search (i.e., tools for

hyperparameter tuning. As mentioned, ML compares different models and tries to find

the best one). Furthermore, they are chosen individually for each algorithm used in

the ensemble. First, we maximize the efficiency of these algorithms individually. Then,

we compare the impact of each algorithm on the ensemble by choosing the best set of

parameters for them. Table 2 shows the parameters tested for each ML technique.

4.1.3 Ensemble Learning

Ensemble learning consists of methodologies that aim to deduce the specific func-

tion of the target by training various potential learners and integrating their hypotheses

[18]. This study tested ensemble ML classifiers, incorporating boosting and bagging tech-

niques, such as Catch22, Weasel, TSF, K-NN, and Arsenal.

It becomes necessary to evaluate the predictor when creating and training the

Ensemble Predictor with the training set. Consequently, the trained predictor employs
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Table 2: Table of Parameters

Classifier Predictor

SVM
C = 100
kernel = rbf
gamma = 0.1

Signature

estimators = 100
estimator = Random Forest
window depth = 3
depth = 4

CatBoost estimators = 150
LightGBM estimators = 150
XGBoost estimators = 150

Catch
estimators = 200
estimator = Random Forest

Arsenal

kernels = 1000
transform = rocket
estimators = 25
estimador = Ridge Classifier

k-NN
neighbors = 1
distance = DTW

Weasel
binning strategy = information gain
window increment = 2
bigrams = true

the test set to forecast the labels of the test samples. Researchers then compare these

predicted labels with the actual labels to assess the prediction performance. They present

the results of this evaluation in a confusion matrix, forming the foundation for all eval-

uation metrics used to assess the Algorithm’s effectiveness. The subsequent chapter will

delve deeper into the analysis of these metrics.

4.2 Fraud Detection

4.2.1 Metrics

The F1-score is used to assess the data’s positive predictive value and sensitivity

to find some balance when using the harmonic mean. F1-score is the most appropriate

metric for imbalanced datasets representing different class distributions among the five

performance metrics used. The F1-score is the weighted average of the precision, where

the first value is the ratio of the number of correctly predicted positive observations to

the total number of predicted positive observations, as shown in Eq. (4.13).

F1− Score = 2 ∗ Recall ∗ Precision

Recall + Precision
(4.13)



4.2 Fraud Detection 45

Accuracy serves as a metric for evaluating classification models. Informally, it

represents the proportion of predictions our model made correctly. Formally, accuracy

is the ratio of correct predictions to total predictions. The false-positive rate is another

metric for assessing the accuracy of machine learning models. A model must understand

the ”basic reality” or the actual state of affairs to measure its true accuracy. One can

directly evaluate the model’s accuracy by comparing its output against the ground truth.

Accuracy =
TruePositives(TP )

TruePositives+ FalsePositives(FP )
(4.14)

The False Positive Rate (FPR) assesses the incidence of false positives, where the

system mistakenly classifies samples as fraudulent. FPR correlates with the additional

costs a utility incurs when it erroneously dispatches teams for frequent inspection vis-

its. Naturally, this situation also causes significant inconvenience for clients incorrectly

identified as fraudulent.

FPR =
FP

FP + TrueNegative(TN)
(4.15)

Recall measures the proportion of Actual Positives that our model correctly iden-

tifies as Positive (True Positive), according to Equation (4.16). With this understanding,

Recall becomes the critical metric for selecting the best model when a high cost asso-

ciates with a False Negative. For example, in fraud detection scenarios, failing to identify

a fraudulent transaction (Actual Positive) as fraudulent (Predicted Negative) can lead to

severe consequences.

Recall =
TP

TP + FalseNegative(FN)
(4.16)

Precision metrics try to answer the question: how many attributes we identify

correctly? Another way to express accuracy is the overall ratio of true and predicted

positives. Precision considers the number of features correctly assigned to a given class

versus the number of correct and incorrect assignments. Precision measures the classifier’s

correctness and the positive classification’s correlation, which is computed based on Eq.

(4.17). Higher precision means more true positives and fewer false positives.

Precision =
TP

TP + FP
(4.17)

Area Under The Curve (AUC): AUC or ROC curves spans true positive and false

positive rates and varies between 0 and 1, as in Eq. (4.18). ROC curves are an excellent

metric for evaluating imbalanced databases. The higher the AUC, the more correctly the

predictor can predict the outcome.
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AUC =

∫ 1

x=0

Recall(FPR−1(x))dx (4.18)

4.2.2 Results

Figure 14 shows the precision performance of all the classifiers implemented for

NTL detection. By analyzing the results, we can conclude that the precision results

closely follow the recall results, corroborating the possibility of adopting TSC classifiers

for NTL detection. HybridForest shows better precision than the classifiers analyzed. It

also provides precision results of around 80 %, which are 10 % and 14 % higher than

CatBoost (i.e., , the best-performing conventional classifier) and Catch (i.e., , the best-

performing TSC classifier), respectively. The precision performance metric shows that

HybridForest is more likely to select a relevant sample randomly, i.e., ., the number of

hits returned that was TP or TN.
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Figure 14: Precision Graph Bar

Figure 15 presents the F1-Score for the analyzed NTL detection predictor. Nat-

urally, the F1-Score tends to behave similarly to the metrics used to calculate it. Ac-

cordingly, HybridForest provides a high ratio of correctly predicted positives to the total

number of real positive samples, suggesting a high recall and precision. The F1-Score

performance confirms the benefits of the HybridForest predictor compared to the predic-

tors analyzed for NTL detection. Hence, the F1-Score results mean that HybridForest

is efficient for both detecting frauds and for correctly identifying honest data samples

because HybridForest considers the temporal nature of energy consumption data in the

pre-processing, training, testing, and validation steps and also employs different TSC

classifiers to create an ensemble predictor.

Figure 16 shows accuracy for the analyzed NTL detection predictor. Based on
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the results, we can conclude that the HybridForest has better accuracy than the classifiers

analyzed. Specifically, HybridForest provides accuracy results of around 78 %, which is

around 11 % and 10 % higher compared to CatBoost (i.e., , the best-performing conven-

tional classifier) and Signature (i.e., , the best-performing TSC classifier), respectively.
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Figure 16: Accuracy Graph Bar

Figure 17 illustrates the FPR results, which directly correlate to the inspection

costs incurred by utility companies. A small FPR value represents a small number of false

detections. The FPR results also show the benefits of HybridForest for fraud detection

compared to the predictors analyzed because HybridForest considers the temporal na-

ture of energy consumption data and uses different TSC classifiers to create an ensemble

predictor. For instance, HybridForest achieved a significantly lower FPR, 24 % and 35
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% lower, compared to CatBoost (i.e., , the best-performing conventional classifier) and

Weasel (i.e., , the best-performing TSC classifier), respectively. Those results corroborate

our method’s validity because it achieved very low FPR values compared to other NTL

detectors, regardless of the classifier.
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Figure 18 shows the recall performance of all the classifiers implemented for NTL

detection. Recall is the most used performance metric for NTL detectors, and high recall

values indicate that the predictor is efficient for fraud detection. By analyzing the results,

we observed that all individual TSC-based predictors ( i.e., Catch, Weasel, KNN, SVM,

and Arsenal) performed worse when compared to conventional classifiers ( i.e., XGBoost,

CatBoost, and LightBoost), and HybridForest yields the highest recall performance. How-

ever, introducing an ensemble predictor (combining different TSC classifiers) produces a

more robust and accurate predictor. Consequently, we can classify user samples with ease

based on the recall.

Figures 19, 20 and 21 show the Easy ROC curves for each class predicted, and the

Figures 22, 23 and 24 show the Hard ROC curves for each class predicted. The TSC-based

predictors with the best performance (i.e., Signature) and the conventional classifiers (i.e.,

XGBoost). The ROC curve illustrates the relationship between recall and FPR, where

an optimal result should achieve the highest possible recall value while maintaining the

lowest possible FPR. We can observe that the performance varies among the different

predictors and also among the different classes (i.e., honest data and twelve different

types of fraud described by Eqs. 1-12). It is due to each class having different patterns

and characteristics. Honest and fraudulent f1 data follow the same consumption pattern

but with different amplitudes. It makes it difficult for predictors to distinguish one class

from the other, especially when it started before the observation window [3]. The Fraud

4 has the worst performance regardless of the predictor. It is important to highlight that

some predictors yield different performance results for frauds, e.g., HybridForest results
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in an AUC of over 80% to identify Fraud 7, while XGBoost and Signature yield an AUC

value of under 70% for the same class.

On the other hand, Fraud 9, a random cut-off point, is selected and subtracted

from the actual sample [43], which facilitates prediction. In addition, the Fraud 12 can

be easily detected because this fraud occurs when an attacker switches their consumption

pattern to a user with a low consumption pattern [45]. In this way, for both Frauds 12

and 9, the Fraud patterns yield the best results, i.e., high recall and low FPR (close to 1),

regardless of the predictor. Finally, Fraud 3 multiples each meter reading xt by a different

real pseudo-random number βt between min and max values in a predetermined interval.

Specifically, the fraud level increases as the βt value decreases. It means the NTL might

not occur continuously, and there may be some discontinuous reporting of “fraudulent”

values. Therefore, the user produces different reduction rates across measurements in this

fraud pattern. It confuses conventional classifiers incapable of accounting for the time-

dependent nature of the data and processing it point by point. Therefore, conventional

classifiers will not be able to discern between this type of fraud and honest samples readily.

We can also observe that honest data and fraud patterns 1, 4, 6, 8, and 11 have

the worst results compared to other classes (i.e., 2, 3, 5, 7, 9, 10, and 12), regardless of

the predictors. For instance, the XGBoost predictor in Figures 21 and 24 show the worst

results for honest data and fraud patterns in the 3 for easy and 4 for hard classes compared

to the other ones. The curves for these classes take longer to reach the maximum value

on the y-axis, which means that these classes have a lower recall than the others, i.e., a

lower detection rate. On the other hand, detecting fraud patterns 2, 5, 7, and 9 for easy

and 1, 6, and 8 for hard classes shows better performance, as their curves are higher than

the average curve of all classes, be easier to make predictions for them, i.e., they have a

higher detection rate.
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Figure 19: HybridForest Easy

By analyzing the results of each predictor, we conclude that HybridForest ob-

tained high performances regardless of the classes, reaching the maximum y-axis value

very quickly, especially for fraud patterns 2, 5, and 9 for Easy ROC and 1, 6, and 8

for Hard ROC. HybridForest relies entirely on time-series data processing combined with

an ensemble predictor. On the other hand, the individual TSC-based predictor (i.e.,

Signature) also obtained acceptable results to detect each fraud pattern because they

process time-series data. Lastly, the Conventional predictor (i.e., XGBoost) showed the

worst performances because they treated the data in a tabular format, which can hinder

classification for this application.

We conclude that HybridForest achieved a higher Recall, precision, and F1-score

when compared to the other predictors. In addition, HybridForest outperformed all the

other detectors in terms of FPR ( i.e., 1.9), which directly translates into tangible benefits

(such as the reduction of inspection costs) to utility companies as an expected trade-off for

a more comprehensive and practical NTL predictor. Usually, binary NTL detectors group

all fraud patterns in a single class, which can confuse the predictor by having different

patterns as part of the same class, increasing FPR values. In this context, HybridForest

took advantage of the time dependence inherent to time series in the classification pro-

cess. Therefore, our methodology not only brings benefits to utility companies but also

improves NTL detection. It is achieved by exploring the available data in novel ways and

by employing and combining the most recent resources for classification problems more

efficiently to detect specific types of NTL.
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Figure 20: Signature Easy
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Figure 22: HybridForest Hard
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4.3 Chapter Conclusions

Despite many efforts to detect fraud, it is still an open issue. In this thesis,

we presented a data-oriented heterogeneous ensemble predictor for NTL detection in an

SG scenario. HybridForest relies on the heterogeneous Ensemble to perform a multi-

classification of fraudulent users (i.e., classifying samples as honest or as a specific type of

fraud) with high performance against other methods such as SVM, XGBoost, CatBoost,

and LightBoost to identify types of fraud. In addition, we consider that these frauds in the

electrical system are not only binary, and our predictor can also classify these variations

among them and their different unique aspects. In this context, HybridForest considers

the temporal nature of energy consumption data in the pre-processing, training, testing,

and validation stages and different TSC classifiers to create an ensemble predictor.

For evaluation, we use the Irish dataset, which has a large number and type of

users and a long duration of measurements. This database includes only honest consump-

tion data because of its scenario of uninterrupted monitoring of known users who earlier

accepted the terms of the compact and who had to respond to a questionnaire before

and after the measuring period. We counted twelve types of fraud already described in

the literature in this dataset to create a synthetic dataset with honest and fraudulent

consumers. In this context, we can determine different types of fraud, whereas existing

related works only make binary categories (fraudulent and non-fraudulent). We also fol-

lowed the method adopted in these works, with fraudulent data randomly selected among

users. It is essential because fraudulent samples need to be more balanced and need to
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be used by ML algorithms.

This thesis has presented a data-oriented ensemble predictor for NTL detection

in an SG scenario. The algorithm employs a time series of user consumption data to

build a predictor to classify samples as honest or a specific type of fraud. We tested and

compared multiple TSC algorithms in our experiments. The TSC algorithms performed

better than the conventional classifiers for all metrics, demonstrating the benefits of using

this classifier to create a prediction for NTL detection. By employing TSC classifiers to

build an ensemble predictor HybridForest, we obtained a performance improvement with

an FPR value equal to 1.9% and a precision 80.5% for heterogeneous data and kinds of

frauds. The algorithm focuses on time-series data, which enables the development of a

method that better interprets real-world scenarios and is more error-resistant.
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CHAPTER 5

Performance Evaluation of Frauds

Characterization based on Information

Theory Quantifiers

This chapter presents the results of data-based characterization frauds based on

information-theoretic measures. We attempt to characterize different kinds of fraudulent

users in energy consumption. We describe the evaluation by first explaining the methodol-

ogy used in the simulation and its parameters and metrics. Then, we discuss the obtained

results.

5.1 Evaluation of Characterization

This section discusses the main ITQ used in determining a time series’s chaotic

and stochastic nature, such as the speed dynamics of a means of transportation. We also

explain BP’s symbolization method since evaluating the ITQ in such time series requires

defining probability distributions associated with them. Finally, we detail the causal

planes: CECP and Fisher-Shannon Causality Plane.

We used the BP method [13] to transform raw electricity consumption into a

histogram. Specifically, the BP symbolization method assigns probability distributions

from the time series under consideration, i.e., , the temporal causality of the process.

In this sense, given a time series X(t) = {xt : t = 1, . . . , N} (i.e., , energy consumption

data), an embedding dimension D ≥ 2(D ∈ N), and an embedding delay time τ ∈ N, we
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compute the ordinal patterns of order D (pattern length) generated by

(s) 7→
(
xs−(D−1)τ , xs−(D−2)τ , . . . , xs−τ , xs

)
(5.1)

Afterward, we assign each point in time s with a D-dimensional vector resulting

from evaluating the sequence at time s− (D− 1)τ , . . . , s− τ, s. More information about

the past is built into the vector by considering a higher D value. According to the pattern,

the meaning of order D with respect to time s is permutation π = {r0, r1, . . . , rD−1} of

{0, 1, . . . , D − 1} is defined as

x5−rD−1τ ≤ x5−rD−2τ ≤ · · · ≤ x5−r1τ ≤ x5−r0τ (5.2)

Thus, the data produced by Eq. 5.1 is converted to the unique symbol π. To get

unambiguous results, we set ri < ri−1 if χs−ri = χsri−1. If X(t) follows a slightly con-

tinuous distribution, then the probability of equal values is zero. Therefore, we calculate

the associated relative frequencies for all D! and the possible permutations π of order D,

which this particular ordered sequence was found in the time series divided by the total

number of sequences. Hence, the histogram P ≡ {p(π)} is defined as

p(π) =
#{s of type π : s ≤ N − (D − 1)τ}

N − (D − 1)τ
, (5.3)

where # is the cardinality of the set.

The second concept is Shannon Entropy, a global measure of self-information.

Let X = {xj : j = 1, . . . ,M} be a discrete random variable of length M < ∞ whose

distribution features is the probability function P = {pi : i = 1, . . . ,M}. pi represents the
probability of state i, and

∑M
i=1 pi = 1, and M is the number of possible states of the

checked system. The well-known Shannon entropy is

S[P ] = −
M∑
i=1

pi ln pi, (5.4)

Among them, pi ln pi = 0 if pi = 0, it is related to the physical process described by

P . Once the Shannon entropy S[P ] = 0, the information (knowledge) of the underlying

process described by P is maximal and possible outcomes can be predicted with com-

plete certainty. On the other hand, if the physical process follows a uniform probability

distribution Pe = {pi = 1/M,∀i = 1, . . . ,M} then little knowledge is obtained [13].

It is also helpful to define the so-called normalized Shannon entropy to evaluate

the self-information in a normalized way, denoted by

H[P ] =
S[P ]

Smax

=
S[P ]

S[Pe]
=

S[P ]

lnM
. (5.5)

We need to find a proper measure of complexity based on classification, or infor-
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mation alone. In this case, Lamberti et al. [47] proposes an SC measure CJS[P ], which

can identify important dynamic details, such as electricity consumption, a profile of users

based on consumption, and others. López-Ruiz et al. [48] proposed this complexity

measure based on the product of functions,

CJS[P ] = H[P ]QJS[P, Pe], (5.6)

Where H[P ] ∈ [0, 1] is the normalized Shannon Entropy, and QJS is the disequilibrium

based on the Jensen-Shannon (JS) divergence. In this sense, QJS is expressed by

QJS = Q0JS[P, Pe]

= Q0

{
S

[
P + Pe

2

]
−
[
S[P ] + S[Pe]

2

]}
, (5.7)

Where Q0 is a normalizing constant, while JS is the JS divergence to quantify

the difference between probability distributions. The presence of correlation structure is

quantified in the SC [49], which measures time series complexity. In the case where the

signal from the dynamical system is ultimately ordered or completely random, the value

of CJS[P ] is the same as null, i.e., , the signal has no structure. In between these two

extremes, dynamic systems can perform every possible level of physical structure. These

phases should be reflected in the obtained features of the Probability Density Function

(PDF) and quantified by no-null CJS[P ]. The global property of SC is that its value

does not change with different PDF layouts. Thus, CJS[P ] quantifies disorder but also the

degree of correlated structure.

The third concept used in our characterization is the FI, which is used to analyze

local aspects of changes in the information content given by a time series. It has different

interpretations and calculations; among other things, the amount of information extracted

from a process is a measure of the ability to estimate parameters or the disordered state

of a system or phenomenon [49]. We define it as

FI[P ] = F0

N−1∑
i=1

( 2
√
pi+1 − 2

√
pi)

2 , (5.8)

Where F0 is a normalization constant defined by

F0 =


1 if pi∗ = 1 for i∗ = 1 or i∗ = M

and pi = 0∀i ̸= i∗

1/2 otherwise.

(5.9)

According to Olivares et al. [49], the local sensitivity of FI to discrete PDFs requires the

order of i of discrete values in P = {pi : i = 1, . . . , N} when summing from Eq. 5.8. It

is a distance between two related probabilities. Therefore, different orders will result in

different FI values and, thus, their local nature.
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Finally, we use the concept of the Causal Informational Plane in our character-

ization to allow a visual interpretation. The result of the BP symbolic approach is a

probability distribution (P ), also known as PDF-BP or BP-PDF, based on ordinal pat-

terns described by time series. In this sense, according to Olivares et al. [49], we can

use two representation spaces to characterize a given dynamical system described by a

time series: (a) One has a global-global property called CECP, and (b) has global-local

features called Fisher-Shannon Causal Plane (FSCP) or FS plane.

CECP is a two-dimensional representation obtained by plotting a given system’s

permutation SC (vertical axis) versus permutation entropy (horizontal axis). The permu-

tation SC refers to the complexity measure (CJS) proposed by Lamberti et al. [47] on the

distribution P . Similarly, the normalized PE is the normalized Shannon entropy applied

to the BP-PDF.

This level is particularly effective in distinguishing the deterministic chaotic and

stochastic nature of time series since permutation quantifiers have specific behavior for

different dynamics [13]. For each entropy value, we bound the plane by the minimum and

maximum complexity curves (Cmin
JS and Cmax

JS ).

The Fisher-Shannon causal plane is a two-dimensional plot obtained by plotting

the FI for a given system against the normalized permutation entropy (horizontal axis).

The term causality is due to the temporal correlation between consecutive samples. In this

case, according to Olivares et al. [49], in a system with M distinct states reaching a very

ordered state, we can think of it as producing a time series whose PDF by P0 = {pk ∼= 1,

and pi ∼= 0;∀k ̸= i = 1, . . . ,M}, because there exists Shannon entropy S [P0] ∼= 0 and

normalized FI [P0] ∼= F0 = 1. On the other hand, if the system to be analyzed develops

into a very disordered state, it is reasonable to assume that a PDF describes this particular

state that approximates the uniform distribution Pe = {pi = 1/M ;∀i = 1, . . . ,M} , and
corresponding Shannon entropy S [Pe] ∼= Smax = ln M while F [P0] ∼= 0.

As a result, we considered these ITQ techniques to characterize the frauds in the

informational planes, as shown in the following workflow (as shown in Figure 25):

1. We use a sliding window to convert a user’s energy consumption time series to

the BP probability distribution function in the following way: we map to a unique

symbol π in the histogram the pattern of a certain amount of samples, given by

D, within a window specifies. Then, a probability mass function p(π) is associated

with each symbol according to the number of occurrences of a specific pattern in

the entire series.

2. We extract the FI, PE, and SC ITQs used by the technique.

3. We apply each metric to the obtained BP PDF and later map it to the CECP and

Fisher-Shannon planes characterizing the frauds.

4. Finally, each step previously described is repeated for each user in the dataset.
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Figure 25: Characterization of Frauds with ITQ

It is difficult to find a public dataset with labels about honest and fraudulent

users for data classification, and to the best of our knowledge, there is no public dataset

with such information. In this context, we use consumption data obtained in a constantly

monitored scenario wherein the participants accepted the terms of commitment to have

an SM installed in their homes. It is reasonable to assume that all samples belong to

honest users [41]. We used the dataset from the Ireland Smart Metering Energy Project

[12] for the implementation. The dataset includes more than 5000 private and commercial

electricity consumers from 2009 to 2010. The SM reports 48 energy uses in a 30-minute

interval report daily. During the pre-processing, daily reports with less than 48 measures

were removed since keeping them might result in a more significant number of outliers in

the CECP and FS plane.

Similar to other works that use the Irish dataset, we add five fraud types already

defined in the literature to create a synthetic dataset of honest and fraudulent customers.

In this way, we generate synthetic fraudulent consumption data for the whole time series,

from the first to the last reading, because we considered consumption data composed of

energy consumption samples belonging to honest users, as other works [30, 34, 1] have

also done. We generate samples of five fraudulent consumption patterns based on Jokar

et al. [11], where malicious samples are generated by considering a continuous or periodic
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decrease in energy consumption.

In such a synthetic dataset, 40% of users were chosen randomly to change their

normal behavior for fraudulent behavior. Specifically, in each fraudulent user, we replaced

25% of its energy consumption with an abnormal one given by the mathematical model

of the respective fraud. The amount of samples for each fraud in the dataset is smaller

since those classes would be less frequent than the normal class on a real problem. In

general, frauds report less energy than the actual energy consumed or redistribute the

energy consumption at different times to take advantage of the varying billing system

[1]. Specifically, we consider five models of synthetic NTL attacks proposed by recent

works [3].

Fraud 1 (m1) occurs when we multiply the actual consumption (et) by various

random factors (γt) between 0 and 1. Each instance has a unique trend and size where

the aggression level increases as γt decreases. We define it as

m1(t) = γt ∗ et, (5.10)

Fraud 2 (m2) occurs when the attacker does not want to exceed the maximum

predefined limit. We define it as

m2(t) =

{
et, eta

a, et > a,
(5.11)

where a is cutoff point and a < max(et). The attacker chooses a random cutoff point,

where all energy consumption values above this are reduced because it is fraudulently

changed to the cutoff value [3]. The attacker chooses the cutoff point carefully, as a

low cutoff point will cause the meter to report a series of easily identifiable constant

consumption. On the other hand, if the threshold is too high, the amount stolen will be

too low to be of any use to the attacker.

Fraud 3 (m3) occurs when a random cutoff point is selected and subtracted

from the sample. We define it as

m3(t) = max(et − a, 0) (5.12)

If the result obtained is less than zero, it reports zero. This attack could be due to incorrect

data entry or bypassing the meter by connecting the load directly to the distribution

transformer. Therefore, the meter does not record the amount consumed by the load.

Fraud 4 (m4) is define as

m4(t) = mean(et) (5.13)

It is easily detected by analyzing consumption profiles since the specification of average

power consumption (constant power consumption) does not reflect the average power

consumption of customers; it must vary randomly over time. This attack has no trend,
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mainly due to wrong data injection.

Fraud 5 (m5) occurs when the energy consumption is reduced only for a specific

time, and it distributes the amount of reduction over the rest of the day. We define it as

m5(t) =

{
et − λ et, ts < t < te
et + ϵ/N − n, else

(5.14)

where the specific time occurs between the time, start (ts) and time end (te), λ is the

reduction rate, N is the total number of samples, te = ts + n and ϵ =
∑n

j=1 ets+j−1.

Therefore, the total consumption for this attack is the same as the actual consumption,

but the billing may be lower if the utility uses a time-varying pricing system. This type

of attack is only effective without a fixed price system.

We implemented and analyzed our fraud characterization results using quantifiers

from ITQ in Python software. We used ordpy, a pure Python module that implements

data analysis methods based on the BP symbolic encoding schemes. We used the following

characterization. First, the raw electricity consumption time series is transformed into

a histogram containing causal time information using a non-parametric transformation:

the BP method, for which we used D = 6 and τ = 1. Second, we map this histogram

to the CECP, and its position represents many canonical states. The plane is a compact

manifold containing values of normalized Shannon entropyH and SC C. Later, we observe
the distinct frauds detected in a Fisher-Shannon Plane.

5.2 Results

Figure 26 exhibits the heatmap of the normalized permutation entropy for all the

normal consumption and the five distinct frauds (i.e., , m1, m2, m3, m4, and m5) when

considering each user’s electric consumption behavior. Normal consumption and m1 fraud

aggregate near the highest values for nPE (i.e., , in the interval 0.85 and 1 nPE), while

almost all m4 detected fraud is reunited near the range 0 and 0.05, thus presenting a

minimum entropy and maximum certainty. The other three frauds appear around distinct

normalized permutation values, e.g., , over 83% of the detected m2 frauds are around the

interval 0.75 and 0.90; over 82% of m3 frauds share a similar nPE result around the 0.40

and 0.55 interval; and over 87%m5 frauds are close to interval 0.60 and 0.70. These results

attest that m1 and normal consumption share some similarities and might indicate that

such fraud might be harder to detect apart from the normal consumption due to both

profiles presenting maximum entropy. However, when analyzing others’ NTL behaviors,

the other frauds are much more spread when analyzing their entropies, and thus, they are

easier to detect.

Figure 27 shows the heatmap of a FI distribution among all the detected users. In

such evaluation, all the user’s consumption presented values aggregated in a closer range

(i.e., , lesser than 0.50 FI). Normal and m1 users showed similar results toward smaller

FI values (i.e., , the majority of values located around 0-0.15 FI), while m4 detected
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Figure 26: nPE values distribution (%)

users are highly concentrated around the range 0.35 and 0.40. The other three frauds,

m2, m3, and m5, are more spread toward middle FI range values (i.e., , 0.15-0.30). These

results also indicate that normal consumption and m1 share similar FI values, suggesting

that their electric consumption presents local similarities regarding information aspects.

Hence, other NTL frauds are harder to detect when only analyzing FI results, demanding

further evaluations.
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Figure 27: FI values distribution (%)

Figure 28 presents the heatmap of the SC results for all the intervals when an-

alyzing the normal and NTL electric consumption behavior. The majority of values are

around lesser values of SC (i.e., , from 0-0.40). By analyzing all the normal and the

five frauds’ electric consumption behavior, the SCs concentrate on similar results, which

indicate that it is harder to differentiate between the probability distributions. Therefore,

further discussion is necessary when analyzing CECP and FS plane metrics.

Figure 29 evaluates all the distinct electric consumption time series from the

distinct users. As stated before, we opted to detect five distinct frauds among the normal

electric consumption of the users. By analyzing the CECP results, we characterize each

electric time series according to its SC versus permutation entropy behavior. Depending

on the behavior detected, some users’ consumption might indicate a normal consumption,
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Figure 28: SC values distribution (%)

i.e., , an expected consumption. However, we identified other time series as distinct

frauds, i.e., , m1, m2, m3, m4, m5. These results state that m1 values are near the highest

nPE and lowest SC values. At the same time, normal consumption is spread around

the SC results but concentrated with maximum entropies. The m4 fraud appears near

the smallest values on the axis, while other frauds are spread but easily detected due to

CECP. Therefore, the CECP presented good results when evaluating more than one ITQ.
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Figure 29: CECP evaluation.

Figure 30 compares all the time series from the dataset according to a Fisher-

Shannon plane behavior. It enables the evaluation of the growth regarding the PE x

FI results in a two-dimensional diagram and considers the temporal correlation between

successive samples. It is clear to note the grouping of each user according to its nor-

mal consumption or among the five distinct detected frauds used, i.e., , m1, m2, m3,

m4, and m5. These results state that each profile can be detected when evaluating its
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Fisher-Shannon plane since it uses global-local characteristics from their position in the

plane. Therefore, when analyzing all the regular and fraudulent users, we can see the

patterns of similarity when using the ITQ and when uniting the analysis of the planes.

Such characterizing distinct users by observing their electric consumption indicates the

proposal’s effectiveness in detecting NTL.
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Figure 30: FSCP.

Using only ITQ, our results show that we can characterize users with normal

and abnormal energy consumption by considering the values for each metric and also

characterize types of frauds since users with similar behavior are around the same interval

of the proposed quantifiers. As we can see in the plan, fraudulent users group with their

respective types of fraud. Thus, these users vary their Permutation Entropy and Fisher

Information similarly.

5.3 Chapter Conclusions

We introduced a correctly fraudulent characterization of users associating ordinal

patterns, ITQ, stochastic processes, and causal information planes. Thus, we can precisely

classify each fraud and analyze the user. However, we can find patterns of similarity
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between these frauds to characterize them better and associate them with compatibility

between them, which might prove helpful in the future modeling of random patterns for

different datasets. We can also test our method with other scenarios and types of fraud.



66

CHAPTER 6

Conclusion

This thesis proposal introduces two fraud characterization models for the electric

power system, highlighting the effectiveness of ensemble learning in detecting various

types of fraud and achieving superior metric results compared to other studies. And

the other hand, the application of information theory techniques facilitates more fluid

data handling, minimizes processing time, and maximizes data volume to enhance metric

outcomes.

Despite numerous attempts to combat fraud, it remains a persistent challenge.

This thesis proposes a data-oriented, heterogeneous ensemble predictor, HybridForest, for

Non-Technical Loss (NTL) detection within a Smart Grid (SG) scenario. HybridForest

employs a heterogeneous ensemble to conduct multi-classification of fraudulent users, dis-

tinguishing between honest and specific types of fraud. This approach demonstrates high

performance relative to other methods, including SVM, XGBoost, CatBoost, and Light-

Boost, in identifying fraud types. Furthermore, HybridForest acknowledges the complex-

ity of fraud beyond binary classifications, enabling the differentiation of various fraud

nuances and their distinctive features. It incorporates the temporal dynamics of energy

consumption data throughout the preprocessing, training, testing, and validation phases,

employing diverse Time Series Classification (TSC) classifiers to establish an ensemble

predictor.

The evaluation employed the Irish dataset, characterized by its extensive user

base, lengthy measurement duration, and exclusive inclusion of honest consumption data,

thanks to continuous monitoring and participant consent. To simulate a mixed dataset of

honest and fraudulent consumers, we introduced twelve fraud types identified in literature

into this dataset. This approach allows for recognizing diverse fraud types, moving be-

yond the binary classifications prevalent in related research. Including randomly selected

fraudulent data among users is crucial to maintaining sample balance and suitability for
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Machine Learning (ML) algorithms.

This thesis has developed a data ensemble predictor for NTL detection in an SG

scenarios, leveraging consumption data time series to distinguish honest from fraudulent

consumption patterns. Through experimental comparison of multiple TSC algorithms,

TSC classifiers outperformed traditional classifiers across all metrics, underscoring their

advantage in predicting NTL. Applying TSC classifiers in creating the HybridForest en-

semble predictor enhanced performance, with an FPR of 1.9% and a precision of 80.5%

across heterogeneous fraud types and data. This focus on time-series data paves the way

for a methodology that more accurately reflects real-world conditions and exhibits greater

resilience to errors.

We also introduced an accurate fraud characterization method for users, combin-

ing ordinal patterns, ITQ, stochastic processes, and causal information planes. It allows

for precise fraud classification and user analysis while identifying similarities between

frauds for better characterization and potential future compatibility modeling. The ver-

satility of our method suggests potential applications across different scenarios and fraud

types.

The findings underscore the importance of implementing advanced characteriza-

tion and classification techniques in real smart-grid scenarios to detect fraud, potentially

leading to significant cost reductions effectively. Applying these techniques could translate

to real-world savings worth billions of dollars, assisting electricity suppliers in pinpointing

the location, timing, and nature of frauds.

6.1 Future Works

The findings of this thesis lay a foundation for future academic inquiries and prac-

tical implementations in the field of electric power system fraud detection. The successful

application of advanced characterization and classification techniques, as demonstrated by

HybridForest, opens new avenues for research, particularly in enhancing fraud detection

methodologies and developing cost-effective solutions for electricity suppliers.

Future works may explore the scalability of the proposed models across different

datasets and real-world scenarios, the integration of additional data sources for even

more nuanced fraud detection, and the application of these models in other sectors prone

to fraudulent activities. Additionally, the continued refinement of TSC classifiers and

ensemble learning methods could further improve the accuracy and efficiency of NTL

detection, potentially leading to significant cost savings and operational efficiencies for

electricity suppliers worldwide.

This thesis contributes to the academic discourse on fraud detection in electric

power systems and provides practical insights that could significantly impact the man-

agement and operation of Smart Grids. By addressing the complexities of fraud detection

with innovative methodologies, this work paves the way for more secure, efficient, and
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reliable electricity distribution networks.
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