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Abstract

Abstract of the master thesis presented to the jury as a partial fulfillment of the
requirements for the Master’s degree in the Postgraduate Program of Eletrical

Engineering.

Fuzzy C-Means Based Gateway Placement
Algorithm for LoRaWAN

Advisor: Denis Lima do Rosário
Co-advisor: Eduardo Coelho Cerqueira
Key words: LPWAN; IoT; LoRaWAN; CAPEX; OPEX; Gateway Placement.

Low Power Wide Area Network (LPWAN) technologies recently gained interest
from the research and industrial community. Internet of Things (IoT) devices communi-
cate directly with gateways, which act as bridges towards a central network server and the
Internet. In this context, it is important to study how to place multiple gateways in an area
considering Quality of Service, Capital expenditure (CAPEX), and operational expendi-
ture (OPEX) requirements. This is because network planning and optimization are con-
sidered to be significant issues that impact on the application performance, CAPEX, and
OPEX. In this master thesis, we propose an optimal LoRa gateway placement (PLACE).
It considers the Gap statistics method to find the number of LoRa gateway, which is
used to compute the gateway placement using the Fuzzy C-Means algorithm. Simulation
results show that PLACE reduced in 36% the CAPEX and OPEX compared to the grid
and random gateway placement, while keeps a similar Packet Delivery Ratio.



List of Figures

Figure 1 Protocol layers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

Figure 2 Spectrogram representation of a LoRa signal . . . . . . . . . . . . . . . . . . . . . . . 8

Figure 3 Time on Air of LoRaWAN with 125 kHz bandwidth. . . . . . . . . . . . . . . . 10

Figure 4 LoRaWAN Topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

Figure 5 Protocol stacks of the various devices in a LoRaWAN. . . . . . . . . . . . . . . 14

Figure 6 Class A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

Figure 7 Class B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

Figure 8 Class C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

Figure 9 Illustration of K-Means . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

Figure 10 Illustration of Fuzzy Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

Figure 11 PLACE Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

Figure 12 Gap Statistics Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30



Figure 13 Gap Statistics Error Simulation Function . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

Figure 14 LoRaWAN stack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

Figure 15 Number of Gateways for Different LoRa Gateway Placement Algo-

rithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

Figure 16 PDR for different LoRa gateway placement algorithms . . . . . . . . . . . . . 39

Figure 17 Number of LoRa gateways for different LoRa gateway placement algo-

rithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

Figure 18 Total CAPEX in Ke . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

Figure 19 Total OPEX in Ke . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

Figure 20 Total Cost(CAPEX + OPEX) in Ke . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

Figure 21 CAPEX and OPEX per cost . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41



List of Tables

Table 1 SNR values for different spreading factors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

Table 2 Relation SF / BW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

Table 3 Relation SF - BW - Rb - Sensitivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

Table 4 Frequency bands for various regions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

Table 5 Resource Allocation Protocols Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

Table 6 Cost Assumptions Equipment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

Table 7 Simulation parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36



List of Acronyms

ADR Adaptive Data Rate

AWGN Additive White Gaussian Noise

CAPEX Capital Expenditure

CR Coding Tate

CSS Chirp Spread Spectrum

FCM fuzzy c-means

FSK Frequency Shifting Keying

ILP Integer Linear Programming

IoT Internet of things

LoRa Long-Range

LoRaWAN LoRa Wide-Area Network

LPWA Low Power Wide Area

LPWAN Low Power Wide Area Network

MAC Medium Access Control

MIC Message Integrity Checks

mMTC Massive Machine-Type Communication

NF Noise Figure

OPEX Operating Expenses

QoS Quality of Service

ROC Reliability of Connections

RSSI Received Signal Strength Indicator

SFD Start Frame Delimiter

SF Spreading Factor

SINR Signal to Interference plus Noise Ratio

SNR Signal to Noise Ratio

ToA Time on Air



List of Symbols

fmin Minimum Frequency

fmax Maximum Frequency

Rs Symbol Rate

Rc Chip Rate

Ts Duration of a Symbol

Rb Bitrate

i The Spread Correcting Factor

j The Transmission Employing Spreading Factor

TRX DELAY 1 The First Reception Window

TRX DELAY 2 The Second Reception Window

T Beacon Time Synchronized Beacon

lu the path loss in urban areas

hrx the height of gateway antenna

htx the height of device antenna

f the frequency of transmission

ch the antenna height correction factor

d the distance between the gateway and the device

c Cluster index

i Object index

µic The Membership Coefficient

m Weighting parameter

D2
ic The Standard Euclidean Distance

Jm∗c,b Fuzzy C-Means Objective Function

µic Membership Percentage

U C-Partition Matrix with all the Objects Membership

C The maximum number of clusters



Jm Fuzzy C-Means Objective Function

τ The Reporting Periodicity

Gt Antenna Gain

CBs The Cost of a LoRaWan Gateway Acquisition

Cins The Cost of a Gateway Deployment

Cset The Cost of a Gateway Setup

Txinst The cost of Transmission Installation

Cman The Operation and Maintenance Cost

Clease The Lease Cost

Celet The Electricity Cost per Year

Txinst The Transmission Cost

t The time in Years



Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . p. 1

1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . p. 1

1.2 Motivation and challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . p. 2

1.3 Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . p. 4

1.4 Text organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . p. 4

2 Theoretical Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . p. 6

2.1 LoRa Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . p. 6

2.1.1 LoRa Modulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . p. 7

2.1.2 Spreading Factor Orthogonality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . p. 11

2.2 LoRaWAN Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . p. 11

2.2.1 Network Topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . p. 12

2.2.2 Devices Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . p. 14

2.2.3 Frequency Bands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . p. 16

2.3 Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . p. 16

2.3.1 K-Means . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . p. 17

2.3.2 C-Means . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . p. 18

2.4 Final Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . p. 19

3 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . p. 20



3.1 LoRaWAN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . p. 20

3.2 Gateway Placement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . p. 22

3.3 Final Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . p. 24

4 PLACE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . p. 26

4.1 Network and System model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . p. 26

4.2 Gateway Placement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . p. 28

4.2.1 Gap Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . p. 28

4.2.2 FCM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . p. 30

4.2.3 LoRaWAN Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . p. 32

4.2.4 Metrics Computation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . p. 33

4.3 Chapter Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . p. 34

5 Evaluation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . p. 35

5.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . p. 35

5.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . p. 38

5.3 Chapter Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . p. 42

6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . p. 43

6.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . p. 43

6.2 Future works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . p. 44

6.3 Academical Production . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . p. 44



1

CHAPTER 1

Introduction

1.1 Overview

The recent explosion of the Internet of things (IoT) technology is dramatically

changing society through disruptive technologies in new sets of verticals and applica-

tions [44]. Smart cities, healthcare, agriculture, environmental monitoring, logistics,

home/building automation, smart grid, and critical infrastructure monitoring are only

footprint examples with regards to smart environment verticals [2, 1, 47] targeting many

consumers. Available forecasts estimate that 20.8 billion connected things will exist by

2020 [62], the number of 5G-connected IoT devices will reach 4.1 billion by 2024 [12],

and 500 billion IoT devices are expected to be connected to the Internet by 2030 [21].

In light of these high-dense IoT network predictions, new challenging requirements arise,

which drive to a global connectivity reassessment [10, 16] to enable enhanced potentials

in harnessing real-time planning models.

The list of IoT devices communication requirements is heterogeneous, includ-

ing low energy consumption (to address 10-years battery life), high coverage, and mas-

sive Machine-Type Communication (mMTC) [7]. Indeed, the Internet core is evolving

smoothly, driven by high-expanding large-scale broadband capabilities that optical net-

working technologies offer. On the other hand, access network infrastructures mostly

harness short-range, long-range, and cellular network deployments. Although mature,

existing network access technologies need to evolve to suit IoT requirements [3].

Capital expenditures (CAPEX), represents investments or spending’s in capital

goods, which are those used in the production of other items, such as equipment, con-

struction materials, among others. In other words, it is the funds used to acquire elements

that will help expand the company’s ability to generate profit. Also, Operating expenses

(OPEX), which are payments related to business management activities and the sale of
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products and services. This is the case, for example, of a company that would buy a

computer, but change to a service that delivers the machine and still monitors trains

employees, and updates the system.

Firstly, widely adopted short-range network technologies (e.g., WiFi and Blue-

tooth) provide a few meters limited coverage area, and are highly interference-affected.

Such networks need highly-dense deployment to achieve expanded coverage area [15, 42];

thus, impacting increased expenditures (CAPEX/OPEX), increasing exposition to noise

and interference, as well as very complex management. Traditional cellular networks op-

erating on licensed frequency bands (i.e., 2G, 3G, and 4G) are capable of provisioning

extended coverage from tens up to hundreds of meters, attending thousands of devices

with high throughput [13]. However, modulation complexity, along with medium access

schemes, are highly energy demanding aspects. To capture this growth, innovative long-

range technologies, such as Low Power Wide Area Network (LPWAN) [54], is attracting

attention from both academy and industry through promising capabilities in broad area

connectivity operating on unlicensed frequency bands with the appropriate data rate,

power consumption, and throughput tailored to IoT application verticals [48].

In this context, the Long-Range (LoRa) technology is considered the most adopted

LPWAN technology [41, 63]. Based on the LoRa physical layer, the LoRa Alliance [4]

defines the LoRa Wide-Area Network (LoRaWAN) Medium Access Control (MAC) layer

protocol standard [17]. In particular, the LoRa physical layer adopts the robust Chirp

Spread Spectrum (CSS) modulation with different Spreading Factor (SF) [37]. On top of

the LoRa physical layer, LoRa Alliance defines the higher layers and network architecture

[18]. The MAC layer of LoRaWAN is essentially an ALOHA variant of random access ow-

ing to its simplicity [20]. Regarding the architecture, there are potentially a high number

of IoT devices sending data to the application server via the same LoRa Gateway.

LoRa usually considers one gateway to cover several devices, which could add one

more gateway to split the number of devices in order to improve the Quality of Service

(QoS) [65]. The densification of LoRaWAN poses coexistence challenges as the deploy-

ment of gateways populate urban areas, which brings new challenges to the connectivity

protocols that are currently available. However, increasing the number of gateways also

increases the costs, and thus balancing the interest in terms of QoS, CAPEX, and OPEX

is a challenging task.

1.2 Motivation and challenges

Gateway (also named as “base station” in mobile communication systems) plan-

ning is critical to LoRa networks. Currently, many previous studies [14, 26] have opti-

mized the deployment of base stations in mobile communication with different objectives.

However, planning LoRa gateways is somewhat different from that in conventional mo-

bile networks. It is challenging from the following two perspectives. Firstly, the LoRa

networks emphasize on the reliability of connections (ROC). Unlike mobile communica-



1.2 Motivation and challenges 3

tions, IoT devices in LoRa networks such as smoke alarms, as well as access controllers,

are generally static. They can not move around to have a proper channel as in mobile

communications when the coverage hole exists. In such a case, these IoT devices will be

disconnected from the Internet. How to provide reliable connections is a challenge for

LoRa network planning.

Secondly, when it involves large-scale inputs (such as thousands of candidate

locations), Branch and Bound (B&B) method, which is commonly used to solve small-

scale integer programming problems, fails to terminate within acceptable runtime (e.g.,

several days). Typical approaches such as greedy algorithms do not perform well due to

the unique characteristic of our problem: in the two-type gateway planning problem, each

candidate location has two options of gateway deployment, but only one gateway can be

selected. Such a combinational decision (which one to choose and which type to assign)

will have an impact on subsequent decisions, making deployment interdependent.

In this sense, the problem we are studying in this master thesis is how to place

multiple LoRa gateways in an area, which has possibly hundreds or thousands of deployed

devices. This is because network planning and optimization is an important issue that

impacts the QoS, CAPEX, and OPEX [59]. The communication channel between IoT

devices and gateway can be significantly improved, as a result of such efficient LoRa

gateway placement, while reduces the CAPEX and OPEX. While previous studies have

examined placement problems, to the best of our knowledge, none of them has addressed

the question of the LoRa gateway placement, including minimum capacity requirements

considering cost-efficient. It is common to associate the dilemma of placement gateways

with clustering, where the number of gateways refers to the number of clusters. In other

words, we try to divide the end devices into groups with some similarity between them,

in order to be able to place a gateway that can serve these devices in the best possible

way.

The capability of an IoT network protocol to fulfill those above requirements

needs to be carefully investigated before a massive deployment can be implemented. Cur-

rently, a debate is going on about the adequate performance of many different network

standards. One particular architecture for IoT networks, the LPWAN paradigm, is still in

the evaluation phase in the research community: the objective is to understand whether

these networks are a viable solution for the deployment of massive IoT and whether they

will be able to compete with other standards. In particular, this thesis aims at evaluating

the performance of one of the most prominent LPWAN technology, LoRaWANTM, in a

typical urban scenario.

Comprehensive and accurate system-level simulations of LoRa networks that con-

sider several end-nodes that are deployed in a realistic propagation scenario, with streets

and buildings, are still missing. In order to accurately simulate a LoRaWAN network,

a model for a LoRa network is first proposed and then implemented to develop a new

module in one of the most accurate system-level network simulators that are currently

available: ns–3. Different simulations are then performed with this new tool in order to

evaluate throughput, coverage, and many other important metrics that can be used to
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design an efficient network employing LoRa technology.

1.3 Goals

This master’s thesis presents an optimal LoRa gateway placement based on Fuzzy

C-Means for IoT applications, called PLACE. We introduced an algorithm for LoRa

gateway placement, namely, Delay, coverage, CAPEX, and OPEX. PLACE considers two

steps for LoRa gateway placement. Initially, PLACE determine the number of clusters,

which means the exact amount of LoRa gateway using the Gap statistics method. Then

the number of clusters means the precise amount of LoRa gateway, which is input for

determining the gateway placement using the Gap statistics method.

Thus, the objectives of this work include:

• Study the essential elements of LPWAN.

• Study the essential elements of Gateway placement.

• Evaluate the performance of the proposed placement algorithm compared to other

algorithms.

• Development of a Fuzzy C-Means algorithm.

• Advances the state-of-the-art in LPWAN deployment.

• Implements and evaluates the proposed algorithm.

1.4 Text organization

The rest of the document is organized as follows:

Chapter 2 gives an in-depth description of the technologies on what the proposal is based

on. Then covers the network evolution and characteristics of LoRa and LoRaWAN,

besides there is a categorization of clustering algorithms, giving greater emphasis to

K-means and fuzzy c-means.

Chapter 3 presents related works and state-of-the-art. It also presents proposals based

on different approaches and a summary of the requirements achieved by each work.

Chapter 4 describes the proposal of this master thesis and its complete analysis. It starts

from the designed architecture following by showing the propagation model that

was used. After that, we demonstrate each step to achieve the positioning results.

Chapter 5 presents the evaluation methodology, the achieved results, and a discussion

about them. The simulation parameters are detailed, as well as some interesting

behaviors are presented.
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Chapter 6 there is a double objective. On the one hand, the present work intends to

provide an overview of it, in what it contributed, and the conclusions resulting

from its realization. On the other hand, we want to illustrate what can still be

done so that more findings can be generated from what has already been presented

throughout this master thesis.



6

CHAPTER 2

Theoretical Reference

This chapter presents LPWAN, which emerges to connect devices that require

long-range and low-cost (bandwidth and power) communication services, as expected

in many IoT application verticals (e.g., smart grid, smart metering, smart city, smart

home, and others). In light of this, LoRaWAN is considered the most adopted LPWAN

technology by enabling flexible long-range communication with low power consumption

and low-cost design perspectives. One of those protocols is LoRa, developed by Semtech

and the LoRa-Alliance [4]. It can be said that LoRaWAN technology consists of two parts,

LoRaWAN and LoRa, as shown in Figure 1. The former is a network architecture, and

the latter is a protocol for the physical layer. In addition to contextualizing the research

area of inductive machine learning, in which this research project is inserted. Therefore,

it presents an overview of the area, discusses some of its main objectives, and briefly

presents some relevant concepts involved.

2.1 LoRa Overview

LoRa is a proprietary spread spectrum modulation based on CSS by Semtech [8].

Unlike other wireless systems that use Frequency Shifting Keying (FSK) modulation for

low power consumption, LoRa is based on CSS modulation. LoRa maintains the same

low power characteristics as FSK modulation but increases the range of communication

significantly. CSS was first used to provide military communication, where LoRa is the

first low-cost implementation for commercial use [65].

LoRa is the physical layer protocol. The LoRa protocol is a proprietary protocol

developed by Semtech, unlike the LoRaWAN protocol, which is open source. Due to

LoRa being a proprietary protocol, information about the design and implementation

is not readily available from Semtech. However, the implementation of the protocol is
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Figure 1: Protocol layers
Source: Author

considered well understood.

2.1.1 LoRa Modulation

LoRa utilizes a spread spectrum technique called CSS that was initially developed

for radar applications in the 1940s [56]. In LoRa, the spreading of the spectrum is achieved

by generating a chirp signal that continuously varies in frequency [56].

The main concept behind CSS is that a sinusoidal signal of linearly varying fre-

quency and determined duration, called chirp, can be employed to “spread” information

over a broader spectrum than it would typically need to occupy. This uniform distribution

of a symbol over a larger bandwidth provides resistance to frequency-selective noise and

interferers, at the price of lower spectral efficiency. Using some additional precautions,

CSS can also be more resilient to multi-path interference and the Doppler effect than

other more conventional modulations.

The Figure 2 illustrates different types of chirps - the first half being standard

up chirps where frequency increases over time and restarts from the min frequency (fmin)

towards max frequency (fmax) followed by short down chirps annotated as Start Frame

Delimiter (SFD) that goes from fmax to fmin, and then modulated chirps that contain

data bits.
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Figure 2: Spectrogram representation of a LoRa signal

Source: Adapted from Haxhibeqiri et al.

Figure 2 also shows an illustration of a LoRa packet, which presents a spectrogram

representation with time on the horizontal axis and frequency in the vertical axis. Notably,

a PHY layer LoRa message consists of the chirp signal sweeping the frequency band. After

some repetitions of this frequency sweep that constitute a preamble (whose minimum

length is of 4.25 chirps), data is encoded in the signal as instantaneous changes in the

frequency of the chirp, or lack thereof. The SF is the number of bits that LoRa encodes in

a symbol is a tunable parameter can be defined in Equation 2.1, where Rs is the symbol

rate and Rc is the chip rate.

SF = log2

(
Rc

Rs

)
(2.1)

This means that a chirp using spreading factor SF represents 2SF bits using a

symbol and that there are M = 2SF possible starting frequencies for a chirp. A transmis-

sions spreading factor is also used to determine the duration of a symbol (Ts), according

to the following expression:

Ts =
2SF

BW
(2.2)

This implies that assuming the modulation is using a fixed bandwidth, an increase

of the spreading factor of 1 will yield symbols that last twice the duration. Analogously,

a more significant bandwidth increases the rate at which chirps are transmitted, and

consequently, the bitrate of the modulation. An increase in the transmit time for a chirp

(i.e., a symbol) gives the message higher robustness to interference or noise.

On the other hand, this effect may be partially balanced by the fact that for

higher SF, the number of possible symbols increases. Thus, making the occurrence of

symbol errors more likely: the reason for this is that achieving synchronicity between the

receiver and the signal especially critical when low data rates are employed. Another



2.1 LoRa Overview 9

disadvantage of transmitting longer messages is the increased probability of collisions.

Because of the reasons above, the choice of SF affects receiver sensitivity, which is defined

as:

S = −174 + log10(BW ) +NF + SNR dB, (2.3)

where the first term is due to thermal noise at the receiver in 1 Hz of BW, NF is the noise

figure at the receiver, and SNR is the signal to noise ratio required by the underlying

modulation scheme. Table 1 represents SNR values for different spreading factors, where

it is possible to visualize that increasing the spreading factor allows for better sensitivity.

Table 1: SNR values for different spreading factors.

SF SNR

7 -7.5 db

8 -10 db

9 -12.5 db

10 -15 db

11 -17.5 db

12 -20 db

The bitrates for a range of spreading factors and bandwidths can be found in

Table 2. Given Eq. 2.2, we can now get the bitrate (Rb) for a certain pair of SF and BW

using a simple computation:

Rb =
SF

Ts
(2.4)
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Table 2: Relation SF / BW

SF 125 kHz 250 kHz 500 kHz

7 6835 12671 27343

8 3906 7812 15625

9 2197 4396 8793

10 1220 2441 4882

11 671 1342 2685

12 366 792 1464

A SF change is also translated in a change on the Time on Air of the information

sent. Lowering the SF means increasing the data rate, and it means lowering the Time

on Air (ToA). If a node needs less ToA, this time is available for other nodes to transmit.

If the ToA is low, it results in battery consumption savings. This capability of changing

the SF, and consequently, the data rate and the Time on Air, is the Adaptive Data Rate

(ADR). ADR works with symmetrical uplink and downlink conditions [4].

Figure 3: Time on Air of LoRaWAN with 125 kHz bandwidth.

Source: [1]

Equation 2.1 shows that as the spreading factor increases, the data rate decreases;

however, at the same time, the sensitivity is higher. Table 3 shows some examples of these

relations between spreading factor, channel bandwidth, bit rate, and sensitivity.
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Table 3: Relation SF - BW - Rb - Sensitivity

SF BW Rb Sensitivity

7 125 6835 -138

8 125 3906 -136

9 125 2197 -134

10 125 1220 -131

11 125 671 -128

12 125 366 -125

2.1.2 Spreading Factor Orthogonality

One compelling feature of the LoRa modulation is that different spreading factors

are pseudo-orthogonal, even when the same center frequency and bandwidth settings are

used. This allows a receiver to detect a packet using spread correcting factor i even if it is

overlapping in time with another transmission employing spreading factor j, as long as i 6=
j and the received packets Signal to Interference plus Noise Ratio (SINR) is above a certain

threshold (also called isolation) that depends on both i and j. This pseudo-orthogonality

between different packets leaves a network employing LoRa devices to exploit various

spreading factors to achieve higher throughput concerning more traditional modulation

schemes, in which a collision can cause the incorrect reception of both the intended packet

and the interferer. While isolation margin is never explicitly stated in Semtech documents,

in [28], this was investigated, and some estimates were made based on a model of the LoRa

simulation.

2.2 LoRaWAN Overview

The LoRa-Alliance describes LoRaWAN technology [4] as:

The LoRaWAN R© specification is a Low Power Wide Area (LPWA)
networking protocol designed to wirelessly connect battery operated
“things” to the internet in regional, national or global networks, and
targets key Internet of Things (IoT) requirements such as bi-directional
communication, end-to-end security, mobility and localization services.

As can be seen from the above quote, the main focus of LoRaWAN is to be a



2.2 LoRaWAN Overview 12

simple network protocol that is easy to deploy and fulfills all the basic requirements for

wireless battery operated IoT devices.

2.2.1 Network Topology

LoRaWAN is a technology developed by a non-profit association named LoRa

Alliance, where on top of the LoRa physical layer, LoRa Alliance defined the higher layers

and network architecture of LoRaWAN [37]. LoRa Alliance counts with 500+ associated

members and 100+ LoRaWAN deployments in different countries.

The standardization effort focuses on massively deploy a low-cost ecosystem with

long-lasting battery lifecycle, bi-directional communication, adaptive data rates, and se-

curity schemes [4]. LoRaWAN operates in an unlicensed spectrum, although operation in

the licensed spectrum would also be possible [24].

LoRaWAN describes the communication protocol and system architecture for the

network; on the other hand, the LoRa physical layer allows the long-range wireless com-

munication link. Because of its influence on the communication protocol and network

architecture, LoRaWAN is primarily responsible for a device’s battery life, network ca-

pacity, quality of service, security, and the variety of applications served by the network

[4].

Currently, several papers that analyze LoRaWAN performance have been pub-

lished over the past few years [34, 52, 33, 49, 38, 51], which introduced the advantages

and limitations of LoRaWAN when applied in different applications with different char-

acteristics. Such as types of data transmission patterns, latency requirements, scale, and

geographic dispersion, among others.

Usually, four elements in a star topology composes LoRaWAN, namely: (i) IoT

devices, (ii) LoRaWAN Gateway, (iii) Network Server, and (iv) Application Server [41](as

shown in Figure 4). IoT devices might be some sensor or other entity producing data that

it wishes to relay to a network server. A LoRaWAN gateway receives data from one or

multiple IoT devices connected to it over LoRa. It forwards it to the network server,

acting as a transparent relay between the device and network server. A single device can

also be connected to several gateways. The network server then makes the data available

to an end-user/application. Communication between an end-device and a gateway is over

the LoRa protocol (see chapter 2.1).

The communication between a gateway and a network server is over TCP/IP,

meaning in some way a gateway connected to the Internet. A LoRaWAN gateway can ne-

gotiate data rates to increase spectral efficiency, battery life, and range, RF output power,

and frequency-channels to use with end-devices using an adaptive data rate scheme. Fur-

thermore, LoRaWAN supports broadcasts from gateways and bi-directional communica-

tion, although with limitations. These limitations reflect the use cases for the end-devices,

resulting in three classes of end-devices. These classes are described in section 2.2.2.
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Figure 4: LoRaWAN Topology
Source: Author

In this sense, the network architecture considers a star-of-star topology, granting

a single hop between the IoT device and gateway over several channels, eliminating the

need to build and maintain a complex multi-hop network. The gateway communicates

with the application server through an IP network [4]. Data rates vary from 0.3 kbps

to 50 kbps, and security schemes implement algorithms to achieve authentication, packet

integrity, and end-to-end (E2E) encryption [4].

As mentioned previously, LoRaWAN uses a star-of-stars topology. This has some

advantages and disadvantages compared to a mesh-network topology as used by some

other wireless sensor networks, such as ZigBee. One of the main advantages of having

a star topology is that it makes it unnecessary for end-devices to listen for incoming

messages and forward them, which draws a significant amount of power. Furthermore,

a star-topology does not require the end-devices to contain any routing logic, resulting

in simpler end-devices. However, using a star-topology has several drawbacks compared

to a mesh-topology, mainly star-topologies rely on a central node, which means that, for

example, a gateway failure will take several end-devices with it offline. Furthermore, a

star-topology network will have no way to recover from that failure until the gateway is

back up again; meanwhile, a mesh-topology network could re-route, perhaps losing some

throughput but maintaining a usable network.

Figure 5 represents the protocol stack of EDs, GWs, and of the NS. While the

ED and NS stacks have an application layer, gateways are only tasked with forwarding

messages between the sensor (i.e., the EDs) and the NS, and are consequently totally

transparent to the end application of the device, which is logically connected directly to

the one on the NS.

Additionally, to the topology of the network, Sornin et al.[57] also describes the

communication protocol. This includes the format of PHY and MAC layer packets, a set



2.2 LoRaWAN Overview 14

Figure 5: Protocol stacks of the various devices in a LoRaWAN.
Source: [39]

of network parameters, like the SF and channel frequencies used by an end device, and

the MAC commands, which must be used to tune the settings above.

2.2.2 Devices Classes

LoRaWAN proposes three types of classes to cater for different application re-

quirements. The three classes are class A (All end nodes), B (Beacon), C (Continuous

listening) [58]. Class A is the first option that all LoRaWAN compliance end nodes should

be able to support. While class B and C being mutually exclusive additional features on

top of class A. This implies that class C end nodes should not implement class B and

vice-versa.

Class A: Bi-directional, asynchronous, starting with an uplink message (from the

device to the server) send at a scheduled uplink transmission window. Follow by opening

two short receive windows by the device. If the server could not answer in either of these

receive windows, the next opening will be after the future uplink transmission from the

device. Only one message can respond. It has high latency and low energy consumption.

Class A (Figure 6) devices implement a node-initiated transmission where all

downlink communication from the server to end nodes have to be initiated by an up-

link transmission from the end-node to server. End-nodes are required to schedule two

reception slots after the initial broadcast to enhance the reception of downlink commu-

nication. The first reception slot uses the exact settings as prior transmission while the

second reception slot uses a preprogrammed SF. The first and second reception slots are

initiated following a transmission after a TRX DELAY 1 and TRX DELAY 2, respectively.

These reception slots only act as a preamble detection window. In any case, where the

packet in the first reception window is designated for the end nodes, the second reception
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window would not be opened. Similarly, if the first reception window duration exceeds

TRX DELAY 2, the second reception window will also be aborted. LoRaWAN suggests

five Tsym as timeout for each reception window.

Class A TX RX1 RX2

Trx_DELAY2

Trx_DELAY1

Figure 6: Class A

Source: Adapted from Alliance

As the name suggests, class B incorporates beacons to improve the responsiveness

of end devices, as shown in Figure 7. End nodes are expected to obtain T Beacon from

gateways and wake up every T Beacon to synchronize itself with gateways to open a short

reception window when necessary. This reception window will allow gateways to transmit

any command from the server to end nodes within a T Beacon. Devices from this class

extend class before by adding scheduled receive windows for downlink messages. It has

average energy consumption and low latency.

Class B TX RX1 RX2

Trx_DELAY2

Trx_DELAY1

Beacon ... Beacon...

T_Beacon

Figure 7: Class B

Source: Adapted from Alliance

Figure 8 shows class C is designed for real-time applications that require an imme-

diate response from end nodes. With this class, end nodes are needed to open a continu-

ous reception window using the preprogrammed SF. Instead of waiting for TRX DELAY 1

before the reception, class C devices immediately open a reception window with prepro-

grammed SF for TRX DELAY 1. After TRX DELAY 1, end nodes switches the reception

settings to settings used in transmission before going back to preprogrammed settings

after TRX DELAY 2. Devices from this class extend the class A by holding the receive

windows open unless they are transmitting. It has high energy consumption, lowest la-

tency.
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Class C TX RX1RX2

Trx_DELAY2

Trx_DELAY1

RX2 Continuos

Figure 8: Class C

Source: Adapted from Alliance

LoRaWAN incorporates additional overhead into the packet to enable the MAC

features provided by the classes above. These overheads include MAC headers, commands,

and Message Integrity Checks (MIC). By combining the overheads, LoRaWAN imposes

13 to 27 Bytes of overhead onto each packet transmitted by an end node.

2.2.3 Frequency Bands

In [1], three regions are specified in which LoRaWANs are expected to perform

at established frequencies, based on local regulations in Europe, China, and the United

States as shown in Table XX. For each one of these regions, the standard mandates

customized parameters that define the preamble, channel frequencies, allowed spreading

factors, maximum payload size, receive windows, and Join procedures to make sure that

LoRaWAN always complies with the local law.

Table 4: Frequency bands for various regions

Region
Frequency Band

[MHz]

Europe 868–870

US 902–928

China 779-787

2.3 Clustering

The goal of clustering is that the object within a group is similar or related to

one another and different from the objects in other groups [22]. Furthermore, cluster

analysis explores unknown groups of data and displays a comprehensible description of

the group’s main similarity feature.

In this master thesis, after conducting the clustering algorithms, it hopes to
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x2

x1

Figure 9: Illustration of K-Means
Source: Author

discover some combinations of data values automatically from the clustering results, which

might predict several certain things or provide some new insights, rather than propose

hypothesizes by ourselves.

2.3.1 K-Means

K-Means Clustering is a technique that performs clustering through the parti-

tioning method [45]. This method consists of constructing multiple data partitions and

evaluating them using some criteria. The name of the algorithm, K-Means, represents

that “k” values declared as centers are used, and their values are represented by the means

(means) of the cluster points assigned to them.

The K-Means algorithm seeks to find the center of regions that represent certain

types of data. The algorithm ranges from assigning to each point to the nearest center,

and choose the cluster center as the average of the points that were assigned to it. The al-

gorithm ends when cluster assignments do not change, the moment where the convergence

point of the same is reached[45], as shown in Figure 9.

Consider data whose proximity measure is Euclidean distance. The objective

function, which measures the clustering corresponding to the data, uses the Sum Squares

of the Error (SSE), also called dispersion. The Euclidean distance from each point to the

nearest center is calculated, then the sum of squares of the residual error is calculated.

The best choice for the center is the one that provides the smallest dispersion value, that

is, the center that provides the best representation for the data in your cluster. The value

of the sum of squares of the residual error is given by the Equation 2.5:

SSE =
K∑
i=1

∑
x∈Ci

dist(ci, x)2 (2.5)
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Where dist is the Euclidean distance between two objects in a Euclidean space.

The center value that minimizes SSE is the average value between the points assigned to

that center. The cluster center value ith is defined by the Equation 2.6:

ci =
1

mi

∑
x∈Ci

x (2.6)

2.3.2 C-Means

The most popular fuzzy clustering algorithm is fuzzy c-means (FCM). It is better

than K-Means (which is a hard algorithm) to avoid the local minimum, but FCM can

still converge to a local minimum of squared error-based criterion. The development of

membership functions is the most important problem in fuzzy clustering; Different choices

include those based on similarity decomposition and cluster centroids. A generalization of

FCM was proposed in Bezdek, 1981, through an objective family of functions (criterion).

FCM can be taken as a generalization of the ISO-DATA algorithm.

Clustering can be classified as Soft clustering (Overlapping Clustering) and Hard

Clustering (or Exclusive Clustering). In hard clustering, each object has two options, to

belong or not in one cluster. Opposite, in the case of soft clustering, the objects may

belong to two or more clusters with different degrees of membership. In this option,

data will be associated with appropriate membership value. This means that each cluster

contains memberships, and each of them is characterized by a degree value between 0 and

1.

This technique was introduced by Jim Bezdek in 1981 [6]. A basic difference

between FCM and K-means is that FCM is taking more time for computation than that

of K-means. The time complexity of K-mean algorithm is O(ncdi) and time complexity

of FCM is O(ndc2i) [27].

x2

x1

Figure 10: Illustration of Fuzzy Clustering

Source: Author
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The fuzzy criterion function, e.g., a weighted squared error criterion function can

possible is is represented by the Equation 2.7 [35]. Which m the fuzzy factor is any real

number greater than 1, µij is the degree of membership of xi in cluster j, xi is the i the

of d-dimensional measured data, cj is the d-dimension center of the cluster.

Q =
N∑
i=1

K∑
j=1

(µij)
m ‖xi − cj‖2 , (2.7)

Fuzzy partitioning is carried out through an iterative optimization of the objective

function shown above, and then with the update of membership µij by Equation 2.8.

Moreover, each round new cluster centers cj are computed with the Equation 2.9.

µij =
1∑c

k=1

(
‖xi−cj‖
‖xi−ck‖

) 2
m−1

(2.8)

cj =

∑n
i=1(µij)

m · xi∑n
i=1(µij)m

(2.9)

This matrix stores a collection of neighborhoods that are available to all pairs

of n individuals. It is represented by a n × n table. Where d(i, j) is the difference or

dissimilarity measured between individuals i and j. In general, d(i, j) is a non-negative

number that is close to zero when individuals i and j are very similar and become greater

the difference between individuals. According can be seen by the Matrix 2.10 d(i, j) =

d(j, i) and d(i, i) = 0. Dissimilarity measures will be addressed later in this chapter.


0

d(2, 1) 0

d(3, 1) d(3, 2) 0
...

...
...

d(n, 1) d(n, 2) . . . . . . 0

 (2.10)

2.4 Final Remarks

This Chapter provided good insight into the theme of this master thesis. We

Start with LoRa, explaining the definition of LoRa, what it is; then, we show how it is

modulated, and to finish, we show a little bit of how the spreading factor orthogonality

works. Next, we define LoRaWAN, going through its topology, the protocol stack, and

finally, the definition of the device classes. Finally, we talk about clustering, starting with

K-means and ending with Fuzzy C-Means. All these topics presented in this Chapter

serves as a basis for a better understanding of this dissertation. Now it is time to move

towards the related work from the literature.
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CHAPTER 3

Related Work

This section is structured to provide an overview of the most significant contri-

butions given by various academic papers, and categorize them according to the specific

topic they were centered on: either modulation and propagation performance of LoRa

devices, simulation of a LoRa system or other kinds of contributions, like protocols. Thus

base station or gateway placement algorithms for IoT networks.

3.1 LoRaWAN

This subsection will mainly deal with works related to LoRa and LoRaWAN tech-

nology with works with different focuses, whether in evaluating a testbed LoRa, simulating

to test the scalability of a LoRa network, simulating the traffic capacity of a network.

Sanchez-Iborra et al. [55] present a comprehensive evaluation of LoRa under

different environmental conditions. The results are obtained from three real scenarios,

namely, urban, suburban, and rural, considering both dynamic and static conditions,

hence a discussion about the most proper LoRa physical-layer configuration for each sce-

nario is provided. First, the estimated signal level in these scenarios has been evaluated

using a precise planning tool, which employs topographic maps and the Okumura-Hata

model. After that, the attained outcomes from the theoretical study have been validated

by an extensive sampling campaign. In the most adverse scenarios, i.e., urban and subur-

ban, coverage ranges around 6 km were attained; in turn, in the open scenario (rural), a

long transmission distance of over 18 km with the lowest data-rate was achieved However,

they use a small number of devices; furthermore, there is no stress enough to have a

packet collision problem.
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Pasolini et al. [47] highlight the different technologies and network topologies,

even when addressing the same urban scenario and present two smart city testbeds de-

veloped in Italy. The first one concerns a smart infrastructure for public lighting and

relies on a heterogeneous network using the IEEE 802.15.4 short-range communication

technology, whereas the second one addresses smart-building applications and is based on

the LoRa low-rate, long-range communication technology. They consider the long-range

LoRa technology, and it has been experimentally shown that its maximum coverage in a

dense urban environment is in the order of 12 km, which is well below the 15 km claimed

by LoRa manufacturers and vendors. Remarkably, this result has been obtained in very

favorable conditions, with the gateway placed at the height of 71 m above the ground and

the highest possible spreading factor.

Bor et al. [9] explore the performance and capability of LoRa and LoRaWAN, then

show how such a transceiver can be established to use efficiently in a wide-area application

scenario. Then they demonstrate how unique features such as concurrent non-destructive

transmissions and carrier detection can be employed. They conclude that LoRa radios can

be used in more generic network layouts than the one used by LoRaWAN. Georgiou and

Raza [25] investigate scalability simulating a single LoRaWAN gateway under interference

conditions. Specifically, they propose a solution for two link outages scenarios, i.e., the

first when the received SNR is below the limits of the acceptable SF parameters and

the second for co-spreading sequence caused by simultaneous transmission. However,

a massive device’s deployment likely requires multiple LoRaWAN gateways positioned

close to each other, and the proximity will increase the access interference. Voigt et al.

[64] investigate two alternatives for the interference problem under multiple gateway and

multiple devices conditions. They conclude that the application of directional antennas

and multiple gateways both improve the network performance.

Adelantado et al. [1] explain the field of LoRaWAN by investigating the limits of

the technology, balancing them to application and declaring the open research challenges.

In the LPWAN M2M fragmented connectivity space, there is not a single answer for all

the viable connectivity requirements, and LoRaWAN is not an exception. A LoRaWAN

gateway, covering a range of several Kms and able to serve up to thousands of end-

devices, must be carefully dimensioned to meet the demands of each use case. Thus, the

combination of the number of end-devices, the selected SFs, and the number of channels

will determine if the ALOHA based access and the maximum duty-cycle regulation fit

each use case. For instance, we have seen that deterministic monitoring and real-time

operation cannot be guaranteed with the current LoRaWAN state of the art.

Gambiroža et al. [23] give an overview of LoRaWAN network capacity the amount

of traffic that a network can handle at any given moment. The maximum capacity can

be theoretically obtained under perfect synchronization and scheduling of the nodes. The

aggregate capacity of a LoRaWAN gateway is evaluated as the number of end-devices that

could be supported within the corresponding cell area by all six available spreading factor

networks while fulfilling the QoS coverage requirement. First, they provide an overview

of commonly used LPWAN solutions; NB-IoT, LTE- M, Sigfox, and LoRaWAN, and the



3.2 Gateway Placement 22

cost, data-rate, Battery Lifetime and others aspects, considering different regions(e.g.,

Europe, Japan, Americas ). Then, a study of LoRaWAN in terms of capacity; they discuss

existing solutions and highlights used approaches. Lastly, they give open challenges and

opportunities.

3.2 Gateway Placement

This subsection will present some works that were necessary for the development

of the positioning algorithm. Their primary focus is to improve the network through posi-

tioning. Some works solved this problem with Linear programming, others with heuristics.

For this, some works have tested on testbed others with simulations.

Caillouet et al. [11] propose a theoretical framework for maximizing the Lo-

RaWAN capacity in terms of the number of end nodes when they all have the same

traffic generation process. The model optimally allocates the SF to the nodes so that

attenuation and collisions are optimized. They use an accurate propagation model con-

sidering the Rayleigh channel, and we take into account physical capture and imperfect SF

orthogonality while guaranteeing a given transmission success probability to each server

node in the network. The imperfect SF orthogonality has an effect mainly be- tween

nodes located near the gateways (using SF7) and those far away (using SF11 or 12). This

affects the total number of served nodes in the network when the nodes too close to the

gateway cannot be served. Numerical results show the effectiveness of our SF allocation

policy. Their framework also quantifies the maximum capacity of single-cell networks and

the gain induced by multiplying the gateways on the covered area. They finally evaluate

the impact of physical capture and imperfect SF orthogonality on the SF allocation and

network performances.

Tian et al. [59] study the placement of LPWAN gateways, when the gateways

perform interference cancellation, and when the model of the residual error of interference

cancellation is proportional to the power of the packet being canceled. They derived the

symmetric crescent shaped regions where a GW can be placed, to enable decoding of

both packets in collision sent by two SNs. Based on this conclusion, to get the minimum

average contentions, which means to achieve maximum PDR. They designed two greedy

algorithms to find the optimized location of GWs. One algorithm is more precise but

computationally complex. The other can be made to approximate the precise one, with

much lower complexity closely. However, they disconsider costs and only simulate with a

small number of devices. Furthermore, there is no stress enough to have a packet collision

problem.

Gravalos et al. [29] present an Integer Linear Programming (ILP) that minimizes

the total cost of the network concerning the deployed devices while achieving mandatory

QoS requirements. They consider a set of stationary nodes (representing facilities) placed

at specific locations. Each node represents a point that generates corresponding metering

data and utilizes a respective IoT end device. The communication devices differ in their
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transmission capabilities, which also relate to their cost. Simulation results on several

topologies and traffic flow scenarios evaluate The effectiveness of the proposed ILP for-

mulation. Nonetheless, they do not use LPWAN to validate their algorithm and use of

CPLEX instead of CAPEX and OPEX that are more acceptable to the market.

Araujo et al. [5] join planning of radio (i.e., SCs) and transport resources (i.e.,

point-to-point fiber links) using heuristics. They compare and examine to determine

the advantages and disadvantages of each approach and in some cases. They showed a

significant reduction in the total cost and, to a great extent, relied on the user distribution

and position of the Fiber Access Point.

Rady et al. [53] classify Gateways deployment problem into two different cate-

gories: network-aware and network-agnostic. The main difference between these two is

precise knowledge of end devices position. In either category, they try to answer two

design questions, that is:

1) where to place Gateways, i.e., to maximize received signal strength and

2) given received signal strength which GW should the ED be associated with to

balance the network load.

However, the author has a fixed number of gateways, and often, several gateways

are running under performance. Moreover, they do not limit the number of users per

gateway. It may happen that you have a huge number of lost packets due to the lack of

available channels for reading data.

Ousat and Ghaderi [46] consider the problem of planning LoRa networks in terms

of gateway placement and IoT device configuration and use mixed-integer non-linear op-

timization for model the plan and deploys LoRa networks. The simulations use only

small networks due to complexity. They develop an approximate algorithm for planning

large-scale LoRa networks efficiently and compare them with the ADR algorithm. Simu-

lation results show averaging improvements of 15% and 20% in the throughput and energy

efficiency of the network, respectively.

Hossain et al. [32] bring out the calculation method from scenario assumption,

network dimensioning to cost structure calculation, which is one main contribution. In

the scenario assumption part, the two dimensions, coverage, and capacity are used to

divide the scenarios. Based on the assumed scenarios, dimensioning is carried out also

from these two aspects. The network is required to meet all the demands. The segments

of the cost structure states of the cost of deploying IoT network, the calculation method

is also introduced. By using the technique, knowing the input, they can get the output. If

they can get more accurate data, the more precise performance analysis can be delivered.

Petrić et al. [50] describe our experimental LoRa setup in the city of Rennes -

LoRa FABIAN, and they designed, performed, and analyzed measurements for it. LoRa

technology offers excellent outdoor coverage either in an urban or rural area. The antenna

location and especially its elevation plays a significant role in the network performances.

In the best conditions, the frame losses are shallow (about 3%). One of the goals of



3.3 Final Remarks 24

our study was to define criteria to switch from one spreading factor to another one to

guaranty the best trade-off between channel utilization and error rate. It appears that

the Received Signal Strength Indicator (RSSI) alone may not be a useful metric since

measurement doesn’t exhibit a strong correlation. SNR could be a better candidate. A

next step will be to combine uplink and downlink traffic to find if some correlation exists

between measurements. This helped determine which LoRa station will be the best to

join a node.

3.3 Final Remarks

Based on our analysis of the state-of-the-art, we conclude that recent studies

described proposals for gateway placement, but disconsidering cost, limiting the number

of devices, LPWAN parameters, even fixing a number of gateways for clustering. However,

to the best of our knowledge, all of these critical features have been provided in a unified

gateway placement.
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Table 5: Resource Allocation Protocols Summary

Proposal
Addressed
Problem

Environment Strategy
Evaluation

Metrics

Sanchez-Iborra
et al.[55]

Coverage Testbed SF RSSI, SNR

Pasolini et al.[47] Capacity Testbed SF
DER,

Collisions

Bor et al.[9] Coverage Testbed SF RSSI, SNR

Adelantado et al.[1] Capacity Testbed SF
DER,

Collisions

Gambiroža et al.[23] Coverage Testbed SF RSSI, SNR

Caillouet et al.[11] SF Allocation Simulation ILP,SF DER

Tian et al.[59]
GW

Placement
Simulation WBL & PGL PDR

Gravalos et al.[29]
GW

Placement
Simulation ILP QoS,Cost

Araujo et al.[5]
HetNets

Deployment
Simulaton

Predefined
Location and

Users
Location

JFI, QoS,
Cost

Rady et al.[53]
GW

Placement
Simulation K-Means QoS

Ousat and Ghaderi
[46]

GW
Placement

Simulation MINLP PDR, Energy

Hossain et al.[32]
Cost

structure
Simulation

Heuristic
Dimensioning

CAPEX,
OPEX

Petrić et al.[50]
Performance

Measure-
ments

Testbed
LoRa

FABIAN
RSSI, PER,

QoS
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CHAPTER 4

PLACE

In this section, we introduce PLACE, which divides the scenario into clusters, i.e.,

the gateway radio range, using the Fuzzy C-Means algorithm. As a result, the number

of cluster means the exact amount of LoRa gateway, which is the input for determining

the gateway placement using the Gap statistics method. PLACE has the advantage of

improving the receiving packets by overlapping the radius of the antenna and knowing

the correct number of gateways, uses the Gap Statistics. We also introduced a set of

heuristics for LoRa gateway placement, namely, QoS, coverage, CAPEX, and OPEX.

4.1 Network and System model

We assume two types of LoRa devices: gateways and a set of IoT devices. IoT

devices are placed at random locations without mobility to collect environment conditions,

such as smart metering, and send such data to a gateway. On the other hand, LoRa

gateways can be placed at a given location based on a placement algorithm. We aim

to optimize the LoRA gateways placement in order to minimize the CAPEX and OPEX

expenditures while respecting predefined QoS requirements.

We can view the LoRa gateways placement dilemma as a cluster/set assignment

problem, where number of clusters is equals to the number of available gateways, in other

words, we seek to partition devices into disjoint sets such that every set can be best served

by one gateway. Our proposal considers two phases (i.e., processing and validation) to

compute the optimal gateway placement, as shown in Figure 11.

The planning of communication systems based on LoRaWAN requires a design

methodology similar to that used in cellular systems, based on the need to estimate the

coverage radius in a cell through the characteristics of the server, the device, and the
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Availability set

Gap Statistics Fuzzy C-Means
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Figure 11: PLACE Overview
source: author

environment, for these situations, the prediction of the coverage area is made through

mathematical models that describe the signal attenuation (path loss) for a given separa-

tion distance between the transmitter and receiver, these mathematical models are called

propagation models.

Empirical propagation models are based on making several measurements and

observations in real propagation environments, the equation that dictates a practical

model is created in such a way as to best fit the measured data, for an empirical model to

be able to represent propagation losses in a given environment efficiently, it must have its

parameters derived from characteristics of the studied location, linked to the frequency of

system operation and effective antenna heights used for signal transmission and reception.

Below, some of the most well-known models in the literature will be addressed, with some

of comparative performance analysis about the model generated in this work.

The Okumura-Hata model is well known and used in planning cellular networks,

being one of the main references for projects in this area, this model was generated from

graphs with information on the lost path obtained by Okumura in several measurements

in the city of Tokyo, in the bands between 150 mhz and 1500 mhz. This model is valid for

base stations (transmitter) with effective heights between 30 m and 200 m for customer

(receiver) heights between 1 m and 10 m. In addition to being well used for mobile

networks, studies show the effectiveness of this model for a LoRaWAN network [19]. The

propagation models are necessary to implement on the simulation to estimate the received

power by the receiver.

The following Equation 4.1 expresses the propagation loss in db units for urban

areas. where: lu is the path loss in urban areas, unit: decibel (db); hrx is the height

of gateway antenna, unit: meter (m); htx is the height of device antenna, unit: m; f is
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the frequency of transmission, unit: megahertz (mhz); ch is the antenna height correction

factor; d is the distance between the base and the device, unit: kilometer (km).

lu = 69.55 + 26.16 log10(f)− 13.82 log10(htx)− ch + [44.9− 6.55 log10(htx)] log10(d) (4.1)

According to the adjustments made by Hata, this model can be applied to ur-

ban and rural areas using the variations of the term ch and the adjustments shown in

Equations 4.2 and 4.3. For small or medium-sized city,

ch = 0.8 + (1.1 log10(f)− 0.7)hm − 1.56 log10(f) (4.2)

and for large cities,

ch =

{
8.29 (log10(1.54hrx))2 − 1.1 , if 150 ≤ f ≤ 200

3.2 (log10(11.75hrx))2 − 4.97 if 200 < f ≤ 1500
(4.3)

To calculate the total loss of a path in a suburban area, the Equation 4.4 is used:

l = lu − 2

(
log10

(
f

28

))2

− 5.4 (4.4)

The total loss to rural areas is found using the Equation 4.5 :

l = lu − 4.78 (log10(f))2 + 18.33 log10(f)− 40.94 (4.5)

4.2 Gateway Placement

We consider a partition-based clustering algorithm to allocate gateway antennas,

which split the instances of the IoT devices in determined classes based on their similarity.

We use this classification methodology because that instead of hierarchical clustering,

which when the cluster is formed is improbable to move the devices to another group,

the method used modifies the positioning of gateways and the membership of each device

in each iteration of the algorithm until converging in a better organization, making it

possible to find a positioning of higher packet delivery rate in relation to the first one.

4.2.1 Gap Statistics

The partition-based clustering algorithm must have the IoT devices for classifying

and the number of clusters as input. Firstly, we considered the gap statistics method [60]

to know the optimal number of cluster, i.e., number of LoRa gateways, comparing the

intra-cluster compactness of the original data features and other random data set, which
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means that the group number which the organization of original data farthest from random

data is the most advantageous choice of clusters number.

The input is a random data set, and the implementation is defined by the follow-

ing stages. Iterate over cluster numbers (c ∈ [1, 2, 3..., C]) computing the Fuzzy C-Means

objective function (Jmc) based on Equation (4.6), which gives a measure of the com-

pactness of our clustering. It considers the cluster index c, object index i, membership

coefficient µic, fuzzification index m to control the shape of membership functions, and

Euclidean distance D2
ic between the ith object and the cth cluster center. Parallel to

this, we consider a predefined number of random data sets B, and for each data set

(b ∈ [1, 2, 3..., B]) its computed the Fuzzy C-Means objective function (Jm∗c,b).

Jm =
C∑
c=1

N∑
i=1

(µic)
mD2

ic (4.6)

The Gap statistics (Gap(c)) function compares the objective function computed

using the original data set (Jmc), and the objective function computed based on another

random distribution of the data with the same shape (Jm∗c,b). That returns the informa-

tion of how organized the data are for each cluster number c, compared to a disorganized

data set, which is computed based on Equation (4.7). In light of this, the clustered in-

dex, which maximizes the value of this function, should give a good approximation of the

cluster number to be used, as shown in the Figure 12.

Gap(c) = (1/B)
∑
b

log
(
Jm∗c,b

)
− log (Jmc) (4.7)

Because it is not an exact method, Gap statistics (Gap(c)) function usually re-

turns an average gap value. For an accurate view of the variation of this value, the

standard deviation (sd(c)) for each cluster number c is computed based on Equation

(4.8).

sd(c) =

√∑
b

(
log (Jmc,b)− 1

B

∑
b log

(
Jm∗c,b

))2
B

(4.8)

From the standard deviation values based on Equation (4.9), we estimate the

simulation error to prove the accuracy of the cluster number choice calculated by the

Gap Statistics (Gap(c)) function. Through it, the clustered index c in (Gap(c)) which the

growth rate starts to slow, i.e., the criterion in Eq (4.10) is matched, can perform another

approximation to the optimal cluster number. In addition, it is possible to calculate the

Simulation Error function, as shown in the Figure 13, which the values that maximize the

derived from the Equation 4.10 the values that best suit this criterion.

s(c) = sdc

√
(1 + 1/B) (4.9)
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Gap(c) ≥ Gap(c+ 1)− s(c+1) (4.10)

Afterward, we compute the intersection of maximum values of Gap Statistic func-

tion and the Error simulation function, using both results to improve the precision of the

choice of the cluster numbers, and from that, to have a cost-saving without having a

significant loss of performance is choose the smallest c from this intersection to serve as

input to a clustering algorithm.

Figure 12: Gap Statistics Function
Source: Author

4.2.2 FCM

The algorithm used, Fuzzy C-Means, has a time complexity O(ndc2i) and is clas-

sified as soft clustering for being based on fuzzy logic. This heuristic, instead of hard

clustering methods as K-Means has as addition the fuzziness coefficient which defines the

probability of association in the range [0, 1] [30]. The reason which we choose this method

is that it has the advantage to classify each device with a fractional degree of membership

of each gateway signal radius, making a device belongs to two or more adjacent trans-

mission clusters (overlapping). Thus, for being in the range of n gateways, when the

end-devices loses connection with one, it keeps sending message to others, significantly

reducing data loss.

Secondly, PLACE considers a random data set and the number of clusters c as

input, where each element has a membership percentage µic of each cluster following the

Equation (4.10), which considers data object index i and cluster index c. Afterward,
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Figure 13: Gap Statistics Error Simulation Function
Source: Author

all the association of each instance we compute for each group in the c-partition matrix

U , which is updated using Euclidean Distance until it reaches classification convergence.

Besides that, the algorithm returns, as a result for the LoRa simulator, the exact position

of the center cluster, which, together with original objects data set make up the position

scenario for simulation.

C∑
c=1

µic = 1, for all i = 1, 2, . . . , N (4.11)

Matrix 4.12 is a representation of a Hessian matrix. This is diagonal and all of

its terms are positive. This allows us to conclude that it is positively defined.

U r =


0.0028078597022686996 0.01853675875426663 ... 0.80810103187119

0.0028078597022686996 0.7775588949488006 ... 0.015991580677400807

... ... ... ...

0.9663056835727758234 0.01853675875426663 ... 0.015991580677400807


(4.12)

As a stopping criterion for our algorithm, we use this last Equation 4.13. If the

module of the difference between the two Hessian matrices is less than or equal to the

expected error,i.e., the matrix stops changing substantially over the algorithm iterations,
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the best positions for the gateways were found.

∥∥U(r+1) − U(r)
∥∥ ≤ ε( tolerance level ) (4.13)

Algorithm 1: Fuzzy C-Means

input : Data to be clustered, fuzzification coefficient m, C desired number
of clusters, ε error stop criterion.

output: Final fuzzy c-partitioned matrix U , cluster centers cntr, final
Euclidean distance matrix D, objective function Jm.

1 initialization;
2 Start U matrix with random values between 0 and 1;
3 while convergence criterion not reached do
4 instructions;
5 for c ∈ {1, . . . , C} do
6 Calculate cluster centers based on Equation 2.9;
7 for i ∈ {1, . . . , N} do
8 Calculate Euclidean distance D2

ic;
9 Calculate objective function Jmci base on Equation 4.6;

10 Update Uci matrix using the membership coefficient based on
Equation 2.8;

11 end

12 end
13 if the convergence criterion in Equation (4.13) is satisfied then
14 Stop algorithm;
15 end

16 end

4.2.3 LoRaWAN Simulation

With the gateways positions, we need to validate the optimum position previously

computed in a LoRa environment. In other words, it is required to include the basic

requirements for a LoRa network to work properly, such as SF, CR, frequency or even

the number of channels, which are some examples of the peculiarities of a LoRaWAN.

The LoRa gateway location must be imported from previously step and evaluated several

times each algorithm to get a number of packets sent, packets received, amount of packets

lost duet o interference, and the number of a lost packet by no more channel available.

In Section 2.2 and 2.1, we show some definitions for the proper functioning of a

LoRaWAN. The simulator must have at least three parts, one for the Final Device, one

for the Channel, and finally, one for the Gateway. The first is where you configure the

Class and its behavior. The Channel is responsible for implementing shadowing, path

loss. Finally, to develop the part of the Gateway, it is necessary to take into consideration

all the requirements of the devices and the environment and add elements of the antenna.

Figure 14 shows what a simulator must have to be able to represent the network correctly.



4.2 Gateway Placement 33

Figure 14: LoRaWAN stack
Source: [39]

4.2.4 Metrics Computation

To evaluate the performance of the proposal, we consider some metrics. To

assess the performance of the network, we use the Packet Delivery Ratio (PDR). So we

can compare performance with a QoS view; after all, any IoT application will require a

minimum package delivery rate. To calculate costs, we use CAPEX and OPEX, based on

some metrics based on project implementation work using LoRa technology.



4.3 Chapter Conclusions 34

4.3 Chapter Conclusions

PLACE receives positions from the dynamically allocated devices in order to do

the clustering, but for this, it is necessary to know the amount of cluster required. So the

GAP algorithm is needed. Already clustered, we use a simulator to simulate LoRaWAN

and to compute the performance of our model compared to other positioning methods.

The following chapter evaluates the proposal with the state of the art, and shows the

improvements obtained.
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CHAPTER 5

Evaluation

This section describes the methodology and metrics used to evaluate the PLACE

algorithm in terms of QoS, CAPEX, and OPEX compared to random and grid deploy-

ment with different numbers of LoRa Gateway. Section 5.1 talks about the metrics and

methodologies that were used to formulate the work. As an example, we explain how

we got to the CAPEX and OPEX formula. In section 5.2, we show the results. Finally,

in section 5.3 we talk about our conclusions about the results obtained in the previous

section.

5.1 Methodology

We use python to compute the number of LoRa gateways, i.e., Steps 1, and 2.

Afterward, the number and location of LoRa Gateway are implemented in NS-3, which

implements the LoRa protocol stack for communication between the LoRa devices and

Gateway. NS-3 also implements an error model for LoRa modulation based on baseband

simulations of a LoRa transceiver over an additive white Gaussian noise (AWGN) chan-

nel [61]. This allows us to reproduce a device behavior in LoRa networks, and the code

is available in our GitLab page1. We conducted 33 simulations with different randomly

generated seeds fed to the simulator’s pseudo-random number generator (MRG32k3a).

Results show the values with a confidence interval of 95%. To compute the costs we take

into account the dissertation of Lin[36], with this information, we created Table 6 .

1https://gitlab.com/gercomlacis/cea/lorawan
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Table 6: Cost Assumptions Equipment

Costs Description LoRaWAN

Equipment Cost (Ke) 1

Installation Cost (Ke) 2

Network Setup Cost (Ke) 0.1

Spectrum Cost (Ke/kHz/site) 0

Transmission Installation Cost(Ke) 4

Transmission Cost(Ke) 0.1

Site Lease (Ke/year) 1

Electricity Cost (Ke/year) 1

Transmission Cost (Ke/year) 0.1

We consider a LoRa Class A network, where transmissions are always initiated

by the IoT devices, in a non-synchronous aspect. For this purpose, the IoT devices may

choose at random one channel. One of the parameters of the system is the reporting

periodicity τ . In our scenario, we assign every IoT devices a random initial reporting

delay, after which the node generates a new packet every τ seconds. In this work, downlink

transmissions, i.e., messages from the gateways to the IoT devices, are considered. We

do not consider it a significant limitation since we expect most of the traffic in a LPWAN

to be uplink.

LoRa imposes the use of at least three mandatory channels at center frequencies

868.1, 868.3, and 868.5MHz in the European sub-band, which we are using. When sending,

the IoT devices picks one of these three channels at random. We consider that all the

gateways are transmitting with maximum power Pmax, with an antenna gain of Gt. We

deployed 1000 fixed IoT devices in a 100Km2 area. Table 7 shows the main simulation

parameters.

Table 7: Simulation parameters

Parameters Value

IoT Devices 1000

Simulation Area 100 Km2

Data Message Size 20 Bytes

Time Simulation 600 s

Gateway Radius 2000m

Frequency 868 MHz

Number Channels 3

Propagation Model Okumura Hata

We evaluate the impact of the PLACE with different placement strategies. For

grid strategy, we divided the scenario into grids of 2 km each side (denoted as Grid25 in
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the plot), and also grids of 2.5 Km (denoted as Grid16 in the plot), where the gateway is

placed at the center of each cell. For the Random, we deployed 25 gateways (denoted as

Rand25 in the plot) and 16 gateways (denoted as Rand16 in the plot) randomly placed.

Finally, PLACE, we compute the number of gateways using gap statistics and then find

the gateways location using Fuzzy C-Means. We evaluate the investment in terms of

CAPEX (Eq. 5.1), OPEX (Eq. 5.3), and total cost for the period of 1 year. We also

compute the performance of LoRa network in terms of PDR.

CAPEX can be computed based on Eq. (5.1). CAPEX depends on the cost

for acquisition a LoRaWan gateway CBs, the cost to deploy the gateway Cins, gateway

setup Cset, and transmission installation Txinst. The deployment cost Cins means to pay

a team to go to the site or a designed place to install a gateway. After sending a team

in loco, an engineer should set up a gateway Cset. These cost, i.e., CBs, Cins, and Cset,

are for a device and communicate with a gateway. However, there is a cost to implement

gateway-cloud communication Txinst. It depends on the local and the application, and it

could be LTE or even fiber.

CAPEX =
S∑

i=1

CBs + Cins + Cset + Txinst (5.1)

The algorithm has some constraints to be a valid proposal, for example, the

minimum percentage of covered devices (value X) in the Equation 5.2 Ak,i = 1 represents

covered devices.

∑
i∈I
∑

k∈K Ak,i

TotalUsers
≥ X (5.2)

OPEX is computed based on Eq. (5.3). Specifically, the Operation and Mainte-

nance Cost Cman, which is about 10%-15% of the CAPEX value. Considering that all the

places that the gateways will be installed will be rented, Clease is concerning a lease cost.

Celet is regarding electricity cost per year, and CTrans is relating to the transmission cost

depending on the chose technology for Txinst. All these costs are per year, so to predict

future cost, change the variable t that represents time in years.

OPEX =

(
Cman ∗ CAPEX +

S∑
i=1

(Clease + Celet + CTrans)

)
∗ t (5.3)

We validate using a LoRa Module [40] in a network simulator, to validate the

optimum position previously computed. We import the users and gateways positions from

a file, then we run 33 times each algorithm (Grid, Rand25, C-Means and Rand16) to get

number of packets sent, packets received, amount of packets lost because of interference,

and number of lost packet by no more channel available.We use a Grid 5x5 for a Grid

algorithm, totaling 25 gateways. The same amount of gateways for the Rand25, but the

gateways is place randomly. Likewise Rand16, although with 16 gateways.
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5.2 Results

Figure 15 shows the number of LoRa gateways for the grid, rand, and PLACE

gateway placement. We can observe that PLACE algorithm computed the mean of the

number of gateway as 15.78, which is approximately 9 gateway less compared to grid and

rand deployment with 25 LoRa gateways. PLACE computed the number of gateway, and

their placement based on the IoT device location in order to provide high PDR, while

reduces the CAPEX and OPEX, as shows the following results. Grid16 and Rand16 have

16 gateways, which is the similar number of gateways computed by PLACE in order to

compare the QoS, CAPEX, and OPEX performance of PLACE, Grid16 and Rand16 with

similar number of gateways.
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Figure 15: Number of Gateways for Different LoRa Gateway Placement Algorithms
Source: Author

Figure 16 shows the PDR for data transmitted considering grid, rand, and PLACE

gateway placement algorithm. By analyzing the results we can see that 16 gateway

randomly placed have worse PDR compared to algorithm with same number of gateways,

i.e., rand16 has 5% lower performance compared with grid16, as well as 10% compared to

PLACE. This is because it randomly place the gateways without consider the location of

IoT devices, and in some cases it has high concentrate place overloading the data capacity

resulting packet loss. On the other hand, PLACE provides PDR similar to Rand25 besides

the difference of 9 gateways. This is because GRID has more gateways to cover the entire

scenario, while PLACE computed the optimum number and location of gateway based on

the network IoT device location in order to provide high PDR.
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Figure 16: PDR for different LoRa gateway placement algorithms

Source: Author

Considering Figure 15, we took a seed from the simulation, the seed is the same

for Figures 12 and 13. Figure 17 shows all the positions of the gateways for each one of the

algorithms used to compare with PLACE. The small dots are the devices, and the blue

circles are our algorithm. In this specific scenario, we use 16 gateways for our algorithm.
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Figure 17: Number of LoRa gateways for different LoRa gateway placement algorithms

Source: Author

We considered Grid25 and PLACE, since Rand25 and Rand16 have the same

number of gateways, and thus the CAPEX and OPEX will be the same. By analyzing the

results of Figure 18, we can observe that the PLACE reduces in 36.36% the CAPEX, since
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it found the optimum number of LoRa gateway, while provides similar PDR compared to

Grid25. To calculate CAPEX we use the Equation 5.1.

GRID25 PLACE0
20
40
60
80

100
120
140
160
180

CA
PE

X 
(K

)

Figure 18: Total CAPEX in Ke
Source: Author

Figure 19, shows that even for OPEX, the ratio between GRID25 and PLACE

remains 36%. We consider t = 1 in Equation 5.3, but even if increasing the variable the the

ratio stays the same, as there is no operation to increase or decrease in OPEX calculation.

In this example we saw that PLACE costs 45024.75e and GRID25 28815.84e. As stated

earlier, the cost of the other algorithms will not change the cost, as it has the same amount

of gateway.
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Figure 19: Total OPEX in Ke
Source: Author

Moreover, Figure 20 presents a total cost for a placement in a 100 km2 area for
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1 year, where we observe that PLACE is 36% lower than using Grid. All the cost are

only considering the gateways because the costs of the devices will be the same regardless

algorithm we choose.
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Figure 20: Total Cost(CAPEX + OPEX) in Ke
Source: Author

Finally, Figure 21 shows the costs of both CAPEX and OPEX for each price

associated. The cost of installing the transmission is responsible for 47% of the entire

cost. This cost is related to the technology that will be responsible for sending the

gateway information to a cloud (e.g., LTE, WiFi, etc).
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Figure 21: CAPEX and OPEX per cost

Source: Author
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5.3 Chapter Conclusions

From our performance evaluation analysis, we conclude that PLACE improves

in a cost-efficient way the IoT scenario, managing to maintain a high value of package

delivery rate. In this sense, it is definitely possible to implement a smart grid scenario, for

example, at a lower cost if you use the PLACE algorithm instead of the other algorithms

compared in this chapter. In addition to using a clustering model based on Fuzzy, we can

prepare the devices for possible failure in the gateways.
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CHAPTER 6

Conclusions

This dissertation addresses the problem of LoRaWAN implementation in small

IoT installations, such as sensor networks for agriculture monitoring and control. To

solve this problem, a LoRa gateway placement algorithm is proposed. In order to reduce

the overall cost of the project, maintaining the system resiliency and quality of service.

Initially, the number of gateways is computed using the Fuzzy C-Means algorithm, which

is the input for determining the gateway location using the Gap statistics method.

6.1 Contributions

It computes the costs of a LoRaWAN project. Since the prices are high, we use

heuristics based on Fuzzy C-Means to reduce the number of the gateway and consequently

to reduce the costs of implementation. Simulation results demonstrate the same Packet

Delivery Rate for PLACE and GRID25 within nine gateway less.

In summary, we seek to position LoRaWAN gateway in a strategic position in

order to cover all the user devices (sensors) with reliability and reducing the costs. We

use Capital expenditure and Operating expenses to evaluate our algorithm. The results

exhibit savings, up to 36%, on the overall installation cost, and statistically with the same

delivery ratio.

In my opinion, the gateway positioning algorithm for LPWAN is an area that is

still little explored, which tends to grow as it is an area that only tends to grow. As you

look for the implementation of LPWAN gateways, it increases more accurate will be the

algorithms to estimate the cost of the project.
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6.2 Future works

For future work, the strategy is to change the clustering method to start clustering

by RSSI instead of the Euclidean distance. In addition to comparing with works that

implement entire Mixed Integer Linear Programming (MILP) to know how close to the

optimum our result is. Another step for this work is to implement the LoRa parameters

optimization with the positioning of gateways to be a self-configured and self-optimized

network.
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