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HETEROGENEOUS 5G NETWORKS
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O ramo de gerência de mobilidade de redes é responsável pelos protocolos e ações
tomadas pela rede para garantircontinuidade dos serviços consumidos por usuários móveis.
Nesta dissertação é analisado como as redes de próxima geração abrirão caminho para a
distribuição de v́ıdeo em redes veiculares (VANETs), compostas por uma infraestrutura
heterogênea ultradensa, unindo tecnologias de comunicação sem fio existentes para obter
maior eficiência espectral. É apresentado um algoritmo de handover chamado HoVe.
Baseado em vários critérios para distribuição de v́ıdeo em VANETs 5G ultradensas. Re-
sultados de simulação mostram a eficiência do HoVe em fornecer v́ıdeos com qualidade
19% superior a algoritmos do estado-da-arte, melhorando a taxa de entrega de pacotes
em pelo menos 30%. Este trabalho estuda um caso particular de VANETs que se ben-
eficia da computação na borda da rede, o caso de Véıculos Autonômos Conectados, ou
CAVs. A computação de borda e em névoa são soluções emergentes para processamento
remoto de dados para véıculos autônomos. Este trabalho propõe o algoritmo MOSAIC
para migração de serviço e gerenciamento de recursos para comunicação entre camadas e
entre camadas na computação de borda e em névoa. Resultados da simulação mostram
a eficiência do algoritmo proposto com melhor desempenho de ate 50% em termos de
latência e cinco vezes menos falhas de migração.
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The network mobility management branch is responsible for the protocols and
actions taken by the network to ensure connectivity and the continuity of services con-
sumed by mobile users. In this dissertation we analyse how next-generation networks
pave the way for the distribution of video in vehicular networks (VANETs), composed
by an heterogeneous ultra-dense infrastructure, joining existing wireless communication
technologies to obtain greater spectral efficiency. A handover algorithm called HoVe is
presented. Based on various criteria for video distribution on ultra-dense 5G VANETs.
The simulation results show HoVe’s efficiency in providing videos with 19% higher qual-
ity than state-of-the-art algorithms, improving the package delivery rate by at least 30%.
This work studies a particular case of VANETs that benefits from computing at the edge
of the network, the case of Connected Autonomous Vehicles, or CAVs. Edge and mist
computing are emerging solutions for remote data processing for autonomous vehicles,
offering greater computational power, as well as the low latency required by autonomous
driving. This work proposes the MOSAIC algorithm for service migration and resource
management for communication between layers and between layers in edge and fog com-
puting. Simulation results show the efficiency of the proposed algorithm with a better
performance of up to 50% in terms of latency and five times less migration failures.
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CHAPTER 1

Introduction

This chapter introduces the main concepts and challenges of mobility manage-

ment in heterogeneous wireless networks. Outlines the main research lines and provides

context for the subsequent chapters.

1.1 Mobility Management

The great popularization of mobile services and devices brings with itself the ne-

cessity and opportunity of ubiquitous connectivity. Such devices must support mobile and

cloud-based services anywhere and at any time. Users expect excellent service provision-

ing and coverage, and an unsatisfactory user experience translates into a monetary loss

for operators and providers. Therefore, protocols and strategies for network management

must be carefully designed to support the integration of new technologies and scenarios,

such as next-generation networks, ultra-dense scenarios networks, and heterogeneous users

and services [8]. Next-generation wireless networks will pave the way for extensive use of

high demanding applications such as video-based services for mobile users, anytime and

anywhere [48], including real-time distribution of advertisement or entertainment videos

over vehicular networks (VANETs). Supporting these multimedia applications will be one

of the critical issues for the success of future networks.

Next-generation communications will not only rely on new access technologies,

such as Massive MIMO and Millimeter Wave, but they will also take advantage of existing

communication infrastructures, such as LTE and WiFi, to provide ubiquitous and efficient

communication [59]. In this sense, 5G networks will be composed of denser heterogeneous

radio deployment compared to 4G systems, increasing the available throughput at the

edge of the network. Denser networks consist of the increased presence if macrocells,

microcells, small cells, relays, and other communication solutions per unit area. It serves
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to achieve both higher spectral efficiency and higher spectrum reuse rates for mobile

networks [23, 14, 31]. The deployed smaller cells offload the traffic that would otherwise

be entirely directed at macrocells, and enable the communication of all kinds of devices

in highly dense, ubiquitous, and heterogeneous environments, having a high impact not

only from a business standpoint but also from a social one, bringing people together and

bringing enormous benefits to their lives [46].

One of the main challenges presented by current and future networking scenarios

is the great mobility associated with the users and the highly heterogeneous nature of such

networks [69]. These networks consist of several integrated technologies, sometimes made

by different manufacturers and with different protocols. Not only the network equipment

are more heterogeneous than ever, but user devices as well. The boundaries of what

is considered a user device have broadened dramatically over the past few years, and

now includes wearable devices, sensors, smartphones, and even vehicles. This introduces

several particularities in the network management, as the mobility patterns of each node

may differ significantly, i.e. a vehicular device follows a more predictable and trajectory

and with a higher velocity than a device with a pedestrian, which is more unpredictable

in comparison.

These challenges constitute mobility management problems and must be treated

differently in network management. Mobility management consists of the strategies, pro-

tocols, and algorithms employed by the network and service providers to ensure that

users have a seamless experience even while moving from one network to another. A

seamless experience, while being a broad term, is a hugely important factor in defining

the user’s Quality of Experience (QoE). It can be said that proper mobility management is

undetectable to the end-users, as their services continue to be consumed without interrup-

tions. However, each user must be considered carefully. Current networking technologies

are often reactive, performing handovers and migrations after the users leave a particular

coverage area. To fully guarantee service continuity in real-world scenarios, a predictive

approach may achieve significant improvements, as shown in subsequent chapters.

Thus, delivering a seamless experience to increasingly demanding users is a vital

network requirement. The mobility management strategies applied in the network have

the purpose of performing the necessary operations to guarantee continuity for services and

connectivity for each user. This requires a wide range of operations, including handover,

session transfers, mobile IP management, service migrations, and many more.

The present dissertation tackles two relevant research problems concerning mo-

bility management in wireless networks; described as follows:

1. In wireless networks, one of the main consequences of user mobility is the number

of disconnections and transfer events, namely handovers. Traditionally handovers

happen when a user crosses the coverage area from one wireless cell into the other.

However, handovers are disrupting events, which may cause packet losses and dis-

connections. The number of handovers and the patterns in which they happen

depends significantly on cell deployment, on the user mobility, and the handover
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algorithm employed by the network. More handovers tend to happen if more cells

are present in the network or if the user’s velocity is high. Thus novel handover

strategies may be necessary in modern scenarios, where the objective may not be

simply to provide users with the highest SINR at all times but to offer the best

possible Quality of Experience (QoE) for end-users.

2. Another challenge in wireless and vehicular networks arises from providing services

to users in a ubiquitous manner. In future vehicular scenarios, the presence of Con-

nected Autonomous Vehicles will not only be expected but also play an essential

role, leading to a more than 500 billion dollar market by 2026 [25]. Autonomous

vehicles rely on the vast amount of sensors which they have equipped. However, the

consensus in the literature is that autonomous vehicles must be connected to access

additional context information and processing [22]. Offloading computation to re-

mote servers is not a trivial task in this scenario. Only servers geographically close

to the vehicles are suitable for the offloading, and the mobility of cars constitutes

yet another challenge for the network.

We will now review the main technical challenges concerning these two research

problems:

1.2 Research problem #1: Handover in Ultra-Dense

Networks

The first of these challenges arise from the denser network deployment trend,

also known as network densification. Densification aims to provide users with high SINR

while maintaining cell usage low most of the time. In a dense network, cells are deployed

in higher numbers and generally with lower transmission power, as not to compromise in

interference levels. This means that the ratio of cells per user is higher than in traditional

networks, thus achieving higher throughput for each user and relatively good coverage.

One of the primary services in such networks is multimedia content consumption,

such as video streaming. Video streaming is already an important market driver, as it

is mostly shared from entertainers and marketers, and is set to achieve an even greater

relevancy [64]. Such videos must be shared with a decent Quality of Experience (QoE)

and Quality of Service (QoS) support to be delivered with satisfactory quality levels for

end-users [9]. One of the critical issues for the future and success of video distribution over

5G VANETs is the capacity to support efficient mobility management algorithms. This is

a consequence of vehicles moving through different areas, and consequently, switching be-

tween different networks [47]. Since vehicles switch networks more than other users, like

pedestrians, their mobility management must be optimized, as handovers for vehicular

devices are more frequent than pedestrian users, resulting in excessive signaling overhead

and reduced performance for these users. However, the highly-dense and heterogeneous
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nature of 5G networks, while enabling higher data rates, also causes more frequent dis-

connections for mobile users.

Taking into consideration QoE and QoS parameters in mobility management can

be a viable option to achieve a minimum quality required for video transmissions. Still,

they may not be enough in dense scenarios [4]. The network can take advantage of the

trajectory of vehicular nodes, since it is somewhat predictable. Estimating a vehicle’s

future geographic position, even in the short term, can significantly improve network

decisions [74]. In this sense, Traffic Management Systems (TMSs) can be integrated into

the QoE-awareness handover process to improve the decision-making process [21].

5G communications have the mission to be responsive, fast, and power-efficient.

It aims to support efficient mobility and resource management schemes to increase the

Quality of Experience (QoE) while optimizing the usage of high demanded wireless/radio

resources [39]. However, the increased number of heterogeneous cells makes mobility man-

agement a challenging task for VANETs, since vehicles, especially in urban environments,

frequently switch among different heterogeneous networks, i.e., vehicles travel leaving an

area of a cell to enter another one very often [47]. Many handovers result in excessive

signaling overhead, disconnection, and ping-pong effect, i.e., a vehicle disconnects from a

cell and afterward connects again to another one moments later [7]. These issues increase

the packets/video frames losses, leading to a poor QoE for video applications in such a

VANET scenario [27].

Skipping unnecessary handovers is beneficial to the network and also to the user’s

experience [23]. A skipping-based handover consists of avoiding consecutive handovers to

maintain the QoE as high as possible. This means reducing the handover frequency by

sacrificing some of the best cell connectivity associations [10]. Hence, this allows keeping a

longer service duration with the serving cell with at least a minimum service quality level,

while reducing signaling overhead and zapping delay. For instance, a handover decision

based on Received Signal Strength Indication, RSSI, would benefit to perform a handover

every time the received SINR is not the highest possible, thus mitigating the ping-pong

effect [23]. Skipping-based handover schemes are often associated with mobility prediction

to maximize the connection duration without compromising the network/application per-

formance [11, 6]. This is achieved by giving priority to cells with the highest probability

that the user remains connected for more time [45]. However, skipping-based handover

schemes alone are not enough to deliver videos with QoE support. A handover decision

based on a mobility prediction coupled with QoE and QoS parameters improve video de-

livery over VANETs by avoiding ping-pong handovers and improving network resources

usage [9].

In this dissertation, we propose a multi-criteria skipping-based handover algo-

rithm for video distribution over ultra-dense VANETs, called HoVe. It guarantees seam-

less handovers in an ultra-dense VANETs scenario to deliver videos with high QoE by

taking into account mobility prediction, QoS, QoE, and radio parameters. HoVe supports

an Analytic Hierarchy Process (AHP) to assign different degrees of importance for each

criterion. HoVe considers proactive Ping-Pong avoidance for handover decision, by skip-
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ping handovers when QoE and QoS are acceptable and stable. The implementation of

HoVe is available for downloading on Github1.

We tested two mobility prediction techniques with HoVe, namely AutoRegres-

sive Integrated Moving Average (ARIMA) and Kalman Filter (KF). ARIMA provided a

higher accuracy for mobility prediction based on a real-world vehicular dataset analysis

compared with KF. Therefore, we chose ARIMA to be considered as a mobility prediction

technique used by HoVe. Simulation results showed that the HoVe algorithm delivered

videos with QoE 14% better than state-of-the-art algorithms in ultra-dense VANET sce-

narios. For instance, the Mean Opinion Score (MOS) results showed an improvement

of 30% in subjective evaluations, while ping-pong handover was kept at a low 2% rate.

The main contributions of this work are summarized as follows: (i) a skipping-based han-

dover algorithm that maximizes connection time to a serving cell; (ii) a multi-criteria

decision-making technique for handover decisions in an ultra-dense VANET scenario; and

(iii) simulation results to show the performance of HoVe to deliver videos with QoE sup-

port in ultra-dense VANET scenarios compared to existing handover algorithms.

1.3 Research problem #2: Connected Autonomous

Vehicles and Service Migration

The next problem investigated by this work arises from the extensive research on

the autonomous vehicles field. Such a field will constitute a transportation revolution on

itself, and the network challenges presented to bring up these concepts are also equally

extensive. Mobility is an inherent factor in such environments, where the constituting

nodes may yield high velocities.

Connected Autonomous Vehicles, also known as CAVs and autonomous driving

technology, will revolutionize transportation systems and bring immeasurable benefits to

our society [38, 22]. CAVs extend and rely on the notion of connected vehicles, where

vehicles will provide and consume new services, such as infotainment, safety, and offload-

ing from other cars and remote servers [22, 5]. However, CAV is still in a preliminary

stage, and there are many challenges to be addressed, mainly due to the high mobility

of vehicles and the dynamic usage of 5G radio resources. Therefore, CAV needs new

mobility/resource-aware approaches to reduce latency for the applications and improve

network/computing resources usage. [5].

CAVs are equipped with a wide range of sensors and actuators that collect a sig-

nificant amount of data from the environment, extract context information, and perform

driving or service decisions. CAVs must process a large amount of collected with very

tight latency requirements. Some works even suggest that up to 2GB of collected data

must be processed per vehicle every second [37]. This constitutes a great challenge for

the local processing of these data since the vehicle’s onboard units (OBU) have limited

1https://github.com/lsiddd/hove
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computation capabilities [73]. This calls for the offloading of these data to remote servers.

However, the latency requirements of autonomous driving applications cannot be met

with traditional computing paradigms, such as Cloud Computing, to guarantee proper

safety for the vehicle [37]. However, the vast amount of data constitutes a challenge for

the processing and extraction of context information [73]. The vehicles in the network

are expected to generate immense amounts of data, and local processing of all this data

to promptly make decisions can be a difficult task.

Edge computing will be a significant part of 5G networks, as mobile users’ com-

puting will happen directly at Cells and Access Points. In this sense, edge computing

can enhance reliability, perform the latency-sensitive computations, validate, and offload

decision-making in CAVs [65]. Edge-enabled environments can offer high bandwidth and

low latency, which will be essential in autonomous vehicle scenarios. Being a highly

distributed architecture, edge computing can access relevant context information shared

between the vehicles (and servers) in their coverage area [40]. However, the computing

power of such approaches is still inferior to traditional cloud computing and must be

carefully managed.

Since the edge computing paradigm is geographically distributed, the services

being consumed are susceptible to the high mobility of vehicles [19]. Traditional mobility

management mainly consists of vehicle switching cells as the serving cells’ signal strength

decreases and will no longer be an efficient solution. As vehicles move to different areas

in the city, the services being consumed in an edge architecture can be disrupted, or be

located many hops away from the user, reducing the Quality of Service (QoS) of CAV

applications. In the era of the autonomous vehicle, an efficient mobility management

scheme must be considered to guarantee an acceptable QoS for CAVs [15].

Service migration is an outstanding solution to keep the services as close as pos-

sible to the CAV, assuring the minimal QoS requirements for CAV applications. It is

also an essential factor in modern mobility management, as we increasingly rely on cloud-

based services. Service migration consists of transferring the service running on a virtual

machine or container to a new server, or just transferring the user session if the base files

for the applications are already present in the target server. Service migration is almost

always a mobility-aware task. Services cannot be transferred reliably without mobility in-

formation [16]. A straightforward strategy to keep services close to vehicles is to perform

migration after every handover to the new nearest edge server. However, this strategy

has a poor performance in highly dynamic CAV scenarios, which is expected in 5G and

6G systems. A migration based on QoS, in which servers with poor QoS performance

are avoided, may solve some of these issues, but it still may cause service disruptions in

mobile environments [33].

Migrations can mitigate the problem of keeping services close to the CAVs; how-

ever, transferring virtual machines and containers is a resource-heavy operation, with

considerable cost to the network. In this context, one of the strategies employed is the

pre-migration of services, where the migration occurs before it becomes necessary, re-

ducing the chance of service disruptions and disconnections. The resources at each edge



1.4 Text Organization 24

server should also be taken into account, as migration to servers with few resources can

compromise the QoS needed for autonomous vehicle applications and impact the entire

vehicle’s decisions.

In this context, in this dissertation, we also propose Mobility-based Service Mi-

gration in CAV, called MOSAIC. A service migration and resource manager for Vehicular

Edge Computing tackles the challenge of offloading the computation from CAVs with

the smallest possible latency, ensuring that the vehicle will be served with the necessary

resources. MOSAIC considers QoS, resources, and mobility information for decision

making, and also MOSAIC uses a Multiple-Criteria Decision-Making algorithm to decide

the best possible edge server for each vehicle, and handle the necessary migrations as

cars move through the scenario. MOSAIC improves the latency in up to 90% and the

throughput in up to 25% compared to state-of-the-art algorithms. Migration failures were

non-existent in MOSAIC

1.4 Text Organization

An introduction of the motivations for mobility management research has been

presented in this chapter, and subsequent chapters build on the notions laid out to present

then the two solutions developed in this dissertation. The remaining of the text is orga-

nized as follows:

• Chapter 2 lays out the main concepts used and needed in this work. Going from the

basic notions and operations in network mobility management to the handover pro-

cess in ultra-dense networks, concepts, and functioning of Connected Autonomous

Vehicles Scenarios, and finally, service migrations in edge-enabled networks.

• Chapter 3 looks into recent works in the state-of-the-art to find the most relevant

ones in the handover, service migration, ultra-dense, and vehicular networks, and

edge computing. We hope to show possible directions and opportunities to improve

the state-of-the-art.

• Chapter 4 presents the concepts in HoVe, a QoE- and mobility-aware handover

algorithm for vehicular scenarios. We fully describe the algorithm functioning and

perform an experimental evaluation of the algorithm compared to state-of-the-art

works.

• Chapter 5 presents the service migration algorithm MOSAIC. MOSAIC relies on

a mobility prediction scheme to perform proactive service migrations in Connected

Autonomous Vehicles Scenarios. We also present experimental results to show the

efficiency of MOSAIC in realistic network scenarios.

• Chapter 6 summarises the conclusions of this work and highlights the advances to

the state-of-the-art in both research problems presented, as well as a list of the

publications made in the course of this dissertation.
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CHAPTER 2

Basic Concepts

This chapter lays out the theoretical grounds on which this work is constructed.

We dive into the elements of heterogeneous wireless networks and how mobile users inter-

act with each other and with the network while consuming services. First, we take a look

at how such networks are constructed, and then we analyze how user mobility affects the

network from a management point of view. Later on, we discuss the case of edge-enabled

networks and Connected Autonomous Vehicles, as well as the challenges imposed in the

network to guarantee their functioning.

2.1 Mobility Management

Mobility management refers to the techniques, protocols, and algorithms used to

ensure services can always reach mobile users, usually in cellular networks. It is one of the

primary functions that allow mobile networks in general to work. Mobility management

has been a crucial factor from the very first generations of mobile networks. With the

advent of next-generation networks, with dense cell deployments, the techniques once

used must be reevaluated and redesigned.

Some of the key operations for mobility management are:

• Location Update: this is the primary feature of mobility management. It consists of

informing the network when a user moves to another area.

• Roaming : it consists of allowing users to start data sessions outside from the oper-

ator’s coverage area, using a visited operator network. In this work, we only tackle

intra-operator mobility management to limit the complexity of the solutions.
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• Initial Cell Selection: it is the first step in establishing a mobile connection. The

User Equipment (UE) must acquire information from the cell about its identifier,

signal quality, and other information. Then the mobile node may proceed to syn-

chronize to a cell’s frequency and time slots. It is usually performed simply, selecting

the cells with the greatest measured SINR.

• Handover : refers to the process of a mobile node changing from one cell’s network

to another. This process may be started by the network by the mobile node and is

generally triggered by the relative received signal power. The handover algorithm in

operation is crucial to understand various network behaviors and must be carefully

crafted. The handover process discussed more in-depth in Section 2.4.

• Service Migration: The notion of service migration is rather new in the context

of mobile networks, as the services being consumed by users were usually kept

in distant centralize locations away from the edge of the network and its users.

The handover process was enough to provide service continuity for mobile nodes;

however, as services may now be located close to the wireless cells themselves,

user mobility raises the necessity of migrating the services to follow user mobility

patterns. Discussed in more depth in Section 2.8.

2.2 Vehicular Ad-Hoc Networks

VANETs are a subset of the broader definition of Mobile Ad-Hoc Networks

(MANETs). The integration of wireless communication, like WiFi and LTE, into ve-

hicles has raised the interest of the scientific community ever since as long as the 1980s.

As users expect to be connected anywhere and at any time, VANETs are a crucial technol-

ogy to provide services to users in traffic. Some of the most relevant ones can be defined

as safety, transport efficiency, and entertainment applications [28].

The market potential of VANETs has long been recognized by stakeholders as

well as the possible improvement to the general quality of life for transportation users.

The ability to communicate and access services and applications from within vehicles

will redefine the ways we live, work, and entertain ourselves. [56]. VANETs can be

considered the cornerstone on which Intelligent Transportation Systems will be built.

Integrating the ability to communicate with other vehicles and fixed infrastructure vehicles

can significantly enhance the lives of drivers and passengers. Their highly dynamic nature

constitutes a challenging environment where data has to be transferred with very low

latency and at high rates [56].

Common VANET applications are:

• Safety Applications: Several safety applications can benefit the communication be-

tween vehicles. Some of the research trends are collision avoidance and warnings,
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SOS service, emergency response, and support for authorities [58]. Such applica-

tions often require timely communications and decision-making, which brings the

opportunity to deploy them at the edge of the network.

• Transportation Efficiency: by allowing vehicles to communicate with each other,

VANETs allow the existence of intelligent communication systems. Some of the

possible applications and benefits from this notion are traffic management, pollution

reduction, platooning, lane changing/merging, bird’s eye view, and many more [58].

The benefits of a transportation point-of-view are immeasurable!

• Entertainment Applications: Although VANETs were primarily considered for safety

applications, in recent years, entertainment purposes have been considered, and user

interest in these applications is expected to become a market driver in the future

[56]. Users are already able to consume and produce multimedia content from their

vehicles. Advertisers can provide location-based suggestions and other use cases.

However, all this communication must be made with the help of QoE-aware mech-

anisms.

2.3 Ultra-Dense Networks

The throughput requirements of modern applications grow at steady rates, as

shown by trends and forecasts [26], especially when considering next-generation scenarios.

Several bottlenecks must be addressed to keep providing users with sufficient resources,

one of which is the capacity of the network edge. Increasing individual cell capacity

is an expensive and challenging task from a research and development point of view,

so increasing the number of cells, constituting the notion of Heterogeneous Ultra-Dense

Networks (H-UDN), is one of the critical enablers for these requirements.

The concept of H-UDN can be defined as a denser deployment of lower power cells

and access points to bring them closer to a large number of geographically distributed end-

users. The denser deployment is made in contrast to more centralized cell deployments,

as found in previous generations of cellular communication. It results in a higher SINR

and throughput to end-users, in general. This enables a higher spectral efficiency for the

cells and allows a greater frequency reuse level [23].

It is hard to define H-UDN quantitatively Some authors go as far as defining it as

networks containing more than 103 cells per kilometer squared, with inter-site distances

in the order of meters. However, mobile users and their data demands are not uniformly

distributed, and the deployment strategies should follow the hot spot patterns of users.

2.3.1 Mobility Management in Ultra-Dense Networks

While the benefits of UDN for stationary users are undeniable, as we have dis-

cussed, the more significant presence of small cells is an excellent challenge for mobile
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users, from a management point of view. As users move through the scenario, they cross

the coverage area of many cells, creating overhead as the network must decide when han-

dover events occur, possibly for a significant number of users and way too frequently. To

make things worse, each handover event generates several signaling messages which may

occupy significant control channel resources.

2.4 The Handover Process

Handover is a critical mechanism in mobile networks. It is the process in which

after a user leaves the coverage area of a cell to a new one, the disconnection with the

previous cells happens, and a new connection is formed to the new one. A handover

is a costly operation for the network since its execution requires a series of operations

to transfer the user’s session seamlessly to the new cell, and redirect any data flows

being consumed seamlessly. Figure 1 depicts the typical messages exchanged between the

participants in the handover process to complete a single successful handover. Figure

1 shows the messages typically exchanged in the handover process. The main actors

involved in the process are the User Device (UE), the source and target eNodeBs (eNB),

the Mobility Management Entity (MME), which oversees this process, and the network

gateway. The handover measurement is composed of the Measurement Control request,

and the Measurement Report issued by the user, the decision phase of the algorithm

is covered by the Handover (HO) Decision step, and the subsequent steps comprise the

Handover Execution Phase.

Figure 2 depicts the typical behavior of the coverage areas of wireless cells, rep-

resented by red dots. The colored area around each cell represents its coverage area. This

pattern is known as a Voronoi Tesselation [13]. Each Voronoi polygon is obtained as the

set of points closer to that specific cell than to any other cell. with an increased number

of cells the coverage area of each cell becomes very reduced in an area (and with reduced

transmission power), making the users traverse through more coverage areas and perform

more handovers.
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UE Source eNB Target eNB MME Gateway

Measurement Control

data data

Measurement Report

HO Decision

HO Request

Admission Control

Handover ACK

Syncronyzation

data data

Figure 1: Mobile Network Handover Procedure Sequence

Figure 2: Voronoi Tesselation Cells Corerage Area Pattern
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The handover procedure can be defined in three distinct phases: measurement,

decision, and execution. We now proceed to discuss each phase individually.

2.4.1 Measurement Phase

In mobile networks, user devices must collect specific metrics periodically, such

as SINR, signal strength from serving and neighbor cells, GPS coordinates in some cases,

and others. These metrics sometimes are translated into network events, such as the LTE

A2, A3, and A4 events later discussed. The network algorithm requests from the user

devices the necessary metrics and events periodically, maintaining control over individual

user metrics. This communication happens in the forms of measurement control messages,

and measurement report messages, and marks the first steps in the handover algorithm

loop.

2.4.2 Decision Phase

The decision phase of the handover algorithm comprehends the algorithm’s busi-

ness logic, in which the earlier requested measurement reports are fed into some decision

mechanism to find the most appropriate cell for the user device to connect to. Typical

decision phases only use signal quality/strength as parameters, often deciding that the

best possible cells are the highest numerical value for these quantities. However, it is

possible to apply multiple-criteria decision-making mechanisms to achieve more reliable

decisions.

This phase needs to consider each neighbor cell included in the measurement

reports, or on a neighbors lookup table, to decide the best one. If the algorithm finds the

best cell for the user, not being the current serving cell, a handover procedure must be

initiated.

2.4.3 Execution Phase

After the handover decision has been made, the handover manager needs to inform

all network elements of its decision. A handover request is made by the user’s current

cell to the target for the session to be transferred. If the handover is acknowledged and

confirmed, the link between the user and the current cell may be broken and a new one

made with the target cell. The order in which the disconnection and connection events

occur characterize the type of handover, as described as follows.

• Hard handover: corresponds to a break-before-make type of handover, where the

connection with the serving cell is terminated before a new one is made. This

approach reduces complexity for the user, who does not need to be connected to

both cells at the same time. Still, the entire process needs to be made in a concise
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time window for the transfer to be seamless, i.e., for it not to affect the user’s

experience.

• Soft handover: in the soft handover scheme, a make-before-break approach is used.

In other words, the user’s session if first transferred to the target cell, and only then

the connection with the previous one is broken. Although it seems to be a more

reliable method in the case of a handover failure, the user’s device must remain

connected to both cells for a short time window.

2.4.4 Handover Algorithms

2.4.4.1 Strongest Cell Handover Algorithm

The Strongest Cell, Power Budget (PBGT) is the default handover algorithm in

many wireless networks for its simplicity and robustness. The only necessary input for

the Handover Manager to make a decision is to receive the power budget from the serving

cell and all of the candidate cells measured by the user.

The algorithm is based on two adjustable parameters: hysteresis and time-to-

trigger. A hysteresis parameter is considered the minimum difference between the neigh-

bor cells and the serving cells’ signal strength, and the time-to-trigger parameter is used,

defined as the minimum amount of time that the hysteresis condition needs to be valid

for the handover to be made

Figure 3 exemplifies how the algorithm performs its decision in the context of

an LTE network. The Reference Signal Received Power (RSRP) stands for the power

received by the user. Even though the power received by the target cell is higher than

the source cells since the second 37, only in the second 40, the hysteresis condition is met,

and the time-to-trigger count is started.

Figure 3: Strongest Cell Algorithm (nsnam.org)
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2.4.4.2 RSSI-based Handover Algorithm

Another handover algorithm widely used in wireless networks is the RSSI-based,

in which not only the raw power budget is considered, but also the received signal’s quality

in terms of noise and interference.

The user device measures the RSSI perceived from the current cell and serves

one periodically on this algorithm. The RSSI-based algorithm uses two thresholds in its

decision, for both current and candidate cells.

For the current cell, a lower threshold is considered, if the RSSI measured for

this cell finds itself below this threshold, the handover is considered, however, it is only

performed if at the RSSI for at least one neighboring cell is a predefined offset above the

current cell’s. These thresholds intend to avoid unnecessary handover events, which may

degrade the user’s experience.

2.5 Multi-Criteria Decision-Making Techniques

When balancing options in systems that can choose among multiple candidates

in a certain context, such as cell for a handover algorithm. The problem for the decision

scheme arises when each candidate in the decision process possesses many attributes that

add different aspects to the decision process. Finding an optimal solution in such context

is a challenging task and involves searching a multi-dimensional attribute space, possibly

adding computational cost. These problems constitute Multi-Criteria Decision-Making,

MCDM, problems, to which several approaches to find a solution, or a group of solutions,

have been proposed. The main methods described in the state-of-the-art are: AHP,

ELECTRE, TOPSIS, AND Grey Theory. We describe hereafter each method as defined

by Aruldos et. al. [12]:

• AHP: The basic idea of AHP is to capture experts’ knowledge of phenomena under

study. Using the concepts of fuzzy set theory and hierarchical structure analysis a

systematic approach is followed for alternative selection and justification problem.

Decision-makers usually find that it is more confident to give interval judgments

than fixed value judgments [12].

• TOPSIS: The TOPSIS method assumes that each criterion has a tendency of mono-

tonically increasing or decreasing utility which leads to easily define the positive and

the negative ideal solutions. To evaluate the relative closeness of the alternatives to

the ideal solution Euclidean distance approach is proposed. A series of comparisons

of these relative distances will provide the preference order of the alternatives [12].

• ELECTRE (Elimination EtChoix Traduisant la REalite ) is one of the MCDM

methods and this method allows decision makers to select the best choice with

utmost advantage and least conflict in the function of various criteria [12].
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• Grey Theory: has a high mathematical analysis of the systems which are partly

known and partly unknown and is defined as “insufficient data” and “weak knowl-

edge”. When the decision-making process is not obvious Grey Theory examines the

international analysis, there exist a great number of input data and it is distinct

and insufficient [12].

Based on the given examples of MCDM methods, the authors choose to rely on

AHP, as both problems tackled in this text can be described to some extent by expert’s

opinion concerning the metrics being optimized.

2.6 Video Distribution with QoE Support

Video streaming is one of the most widely used applications over wireless networks

and is expected to account for more than 80 % of all IP traffic by 2022 [1]. The ability

to deliver multimedia content with acceptable quality has become crucial for network

operators to keep customers satisfied. To execute such a task, the network must be aware

of the quality currently delivered to make the necessary optimizations.

Measuring the quality of video transmission is a non-trivial task, as objective QoS

parameters may not be enough to estimate the user’s satisfaction. When able to estimate

the user’s satisfaction and the variables that interfere with such, network operators can

adapt and optimize the QoE delivered.

While QoE may refer to any type of application experienced by the user, QoE

of video transmissions has received a great deal of attention with the growth of video

demand all around the world. With that in mind, it is necessary to distinguish between

objective and subjective Quality of Experience assessment.

2.6.1 Objective QoE Assessment

Objective QoE assessment is the simplest type of QoE computation, as it involves

measurable quantities, like signal-to-noise-ratio, number of interruptions, and other vari-

ables. Some techniques compare the original and received sequences to obtain the exact

level of degradation, such as PSNR, SSIM, and VQM.

• PSNR: Peak signal-to-noise-ratio, in essence, the ratio is defined as the maximum

power of the signal being considered over the power of the noise. The PSNR metric

is very correlated to the Mean Squared Error (MSE). As the MSE decreases, PSNR

tends to infinite.

• SSIM: The Structural Similarity Index is a metric that receives two images of the

same size and outputs a value from 0 to 1, where one means that the two inputted

images are identical. From a video perspective, the metric computes the SSIM of



2.6 Video Distribution with QoE Support 34

every corresponding pair of frames from the original and transmitted sequences and

outputs a mean of all values.

• VQM: The Video Quality Measurement metric is based on Discrete Cosine Trans-

form and attempts to weigh how the human eye perceives contrast and luminance in

its formula. The metric ranges from 0 to 4, where 0 means a lossless transmission.

Just like for the SSIM metric, the VQM is calculated frame by frame.

2.6.2 Subjective QoE Assessment

Subjective QoE analysis is based on the fact that since humans will be consuming

the video, their impressions should be enough to attest to its quality. While it is a more

trustworthy system in terms of human perception, it is more challenging to scale and

automate. One of the most popular subjective QoE assessment techniques is the Mean

Opinion Score (MOS).

The Mean Opinion Score is a very simplistic QoE assessment technique, but useful

in the sense that it takes in the actual analysis from humans. The model standardized by

the International Telecommunications Union (ITU) consists of a scale from 1 to 5, where

values close to 1 mean an unfortunate quality video sequence and values closer to 5 mean

sequences with good, or acceptable, quality.

While it accurately depicts the human perception of the quality of the transmitted

video stream, it has the disadvantage of requiring one or many people to watch the

sequence and then grade it, now allowing adjustments mid-transmission.

2.6.3 Hybrid QoE Assessment

Hybrid QoE techniques are a type of mix between Subjective and Objective

techniques. These can be defined as an attempt to approximate the subjective evaluation

process and produce results similar to the ones a human being would.

Hybrid, or pseudo-subjective techniques, address the limitations of both objective

and subjective techniques, as they do not require human interaction, but approximate a

human evaluation on time. Several hybrid QoE relies on machine learning techniques to

achieve similar results to the ones of humans.

The technique used in this work to perform QoE evaluation will be discussed

in Chapter 4 is the pMOS and will be discussed in Chapter 4. The pMOS tool is a

random forest trained to react to frame loss rates on a video streaming and output a MOS

evaluation. The evaluations are based on the MOS grades given by human volunteers of

videos with different loss rates. Using so, a low complexity evaluation can be made during

the runtime of the transmission, so network parameters may be adjusted to improve QoE.
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2.7 Cloud, Fog and Edge computing

This section introduces the key differences between the main edge-enabled net-

work tiers: cloud, fog, and edge computing, as well as how each model can be applied to

facilitate decision-making with acceptable QoS. The main concepts, as defined by Yousef-

pour et. al. [70], are as follows.

2.7.1 The Cloud Model

The cloud computing model refers to remote services being executed in a possibly

distant location in large data centers with a high capacity of computing and storage. This

model is typical for a small set of data centers to provide users worldwide through the

internet.

Cloud data centers offer huge pools of ubiquitous processing and storage capabil-

ities for scalable workloads. One of the consequences of this model is that services may

be served a large number of hops away from its clients, increasing the significant latency

to reach the servers and get the required responses. Such latency associated with cloud

servers makes it unfeasible.

The most common cost approach is a pay-as-you-go model, which allows users to

be charged only for the resources they actively use. The types of services offered by cloud

providers are as follows:

1. IaaS: Infrastructure as a Service means that the client can contract and config-

ure certain hardware specifications, such as the size of memory, CPU, as well as

networking configurations for the server.

2. PaaS: Platform as a Service allows users to use to deploy applications without having

to configure the server infrastructure themselves.

3. SaaS: In the Software as a Service paradigm, the software is licensed for users in a

platform- and infrastructure-agnostic way. This means that software can be accessed

on-demand through a network with little to no concern on the clients’ maintenance.

2.7.2 The Fog Model

The IoT-to-Cloud path usually contains a gap in which computing and storage

are traditionally not provisioned for end devices. This introduces latency in the appli-

cations which need to be routed to distant data centers. The fog computing paradigm

is introduced to close this gap and provide efficient cloud-like resources with acceptable

QoS, introduction computing, and storage capabilities between the end devices and cloud

servers.



2.8 Service Migration in Edge-enabled Environments 36

The main characteristic of fog computing is a reduced distance from servers and

services to the end-users, and consequently reduced the number of hops in the routes from

server to the user. Servers in a fog computing environment are horizontally distributed,

supporting multiple domains interconnected. Fog servers are characterized mainly by

the types of applications they can support. Fog servers can support a range of latency-

sensitive applications that cloud services cannot. This results in decreased latency for

applications, enabling a more extensive range of applications to be executed remotely,

such as autonomous navigation, and augmented reality [62].

One of the critical differences between the fog model and the cloud model is

the geographical distribution of the server in the scenario. While cloud servers are all

centralized in a distant location, fog servers cover “fog zones”, i.e., they are geographically

distributed so that there is always a fog server in the proximity of users. This makes fog

services more sensitive to user mobility, as a user can traverse from a fog zone to another,

possibly changing networks as it travels. This means that a server that was once optimal

may no longer suit its application requirements as a user moves.

However, since users are closer to the services, it is easier to deploy context-

aware services in the fog than in the cloud. The fog may be aware, for example, of

network conditions for users, as well as mobility patterns and even social patterns.

2.7.3 The Edge Model

The edge computing paradigm if close to the one of fog computing, in a sense

that it aims to bring servers and services closer to the end-users, however, in the edge

paradigm this is taken a step further, delivering services to the edge of the network, in

base stations and access points, in other words, the edge servers must be one hop away

from the IoT devices they serve.

Edge servers, just like in the cloud or the fog, must provide storage and com-

putation capabilities for the end devices. Because edge servers are highly close to end-

users, they support applications with much stricter requirements, such as applications

that require Ultra-Reliable Low-Latency Communication (URLLC), mission-critical ap-

plications, and such.

Compared to the fog and the cloud, edge computing consists of relatively small

server pools, with limited resources. However, it tends to serve a smaller number of users,

resulting in higher service availability, since users do not have to wait as much for their

requests to be allocated.

2.8 Service Migration in Edge-enabled Environments

The tremendous geographical distribution present in the Fog and Edge computing

paradigms may constitute a problem when applied to mobile scenarios, especially as in
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mobile and vehicular networks, due to the high velocities and mobility involved in these.

Because edge nodes are often found in access points and base stations, as an end device,

such as a vehicle traverses through the scenario, causing network changes at certain times,

handover events change the topology of the network. If an edge service is being consumed

by the mobile node, the QoS of the service may be compromised by the network change.

Service migration is also very challenging. When a user moves through several

adjacent or over-lapped geographical areas, service migration should deal with: 1) whether

the ongoing service should be migrated out of the current edge server that hosts this

service; 2) if the answer is yes, then which edge server the service should be emigrated

to; 3) how the service migration process should be carried out, considering the overhead

and QoS requirements. This problem comes from the trade-off of migration cost (e.g.,

migration cost and transmission cost)in the service migration process and improvement

of users’ expectations on QoS that can be achieved after the migration (i.e., reducing the

latency for users or network overhead). It is tough to obtain the optimal service migration

because of the high uncertainty of user mobility and request patterns, as well as potential

non-linearity of transmission and migration cost [67].

2.9 Connected Autonomous Vehicles

The term “Autonomoues Vehicles” is extensive, possibly referring to several levels

of automation within the context of mobility. However, there is no doubt that autonomous

vehicles and autonomous driving technology will be a cornerstone of modern transporta-

tion systems. They will reduce the number of circulating vehicles, crashes, human errors

on the road, and pave the way for new services consumption in traffic [41]. The most

basic definition of an autonomous car is a car that can drive with reduced, or nonexistent,

human interference.

The levels of autonomous driving technologies are as follows:

0. No Automation – At Level 0 Autonomy, the driver performs all operating tasks

like steering, braking, accelerating or slowing down, and so forth.

1. Driver Assistance – At this level, the vehicle can assist with some functions, but

the driver still handles all accelerating, braking, and monitoring of the surrounding

environment.

2. Partial Automation – The vehicle can assist with steering or acceleration func-

tions and allow the driver to disengage from some of their tasks. The driver must

always be ready to take control of the vehicle, and they are still responsible for most

safety-critical functions and all monitoring of the environment.

3. Conditional Automation – The vehicle itself controls all monitoring of the envi-

ronment (using sensors like LiDAR [66]). The driver’s atten tion is still critical at
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this level but can disengage from ”safety-critical” functions like braking and leave

it to the technology when conditions are safe.

4. High Automation – At Level 4, the autonomous driving system would first notify

the driver when conditions are safe, and only then does the driver switch the vehicle

into this mode. It cannot determine between more dynamic driving situations like

traffic jams or a merge onto the highway.

5. Complete Automation – This level of autonomous driving requires absolutely no

human attention. There is no need for pedals, brakes, or a steering wheel. The

autonomous vehicle system controls all critical tasks, monitors the environment,

and identifies unique driving conditions like traffic jams.

2.10 Service Offloading for CAV

Connected autonomous vehicles require ubiquitous connectivity for their correct

functioning. Some of the essential operations they require are (i): task offloading to edge

and fog servers; and (ii): context information sharing with the network and with other

vehicles. This section will tackle the former. We will review some of the problems that

arise from this necessity.

• Task Offloading: Task offloading is not exclusive to autonomous vehicles. To over-

come the computational limitations of local devices, it has been a problem in other

contexts, including mobile and Unmanned Aerial Vehicles. The case of autonomous

vehicles has some particularities, especially the stringent requirements to be met.

• Latency Requirements: Autonomous vehicles are sensitive to latency and discon-

nections, since compromised QoS may put the passengers and people around the

vehicle in danger. Thus, many authors agree that if the decisions for an autonomous

vehicle must be taken within 10ms of the measurement [61]. Thus cloud offloading

does not allow for these requirements to be met, leaving only edge and fog servers

available.

• Resource Allocation: Edge servers do not have as many resources as cloud data

centers. This means that a limited number of vehicles may use the same server in

a given moment. If the demand is too high, some of the vehicles will have to use

higher-level servers in the fog layer or above, leading to sub-optimal performance.

• Server choice and allocation: Server choice in edge scenarios must be prudent in

this case. If the network allows a vehicle or a group of vehicles to behave greedily,

taking themselves the best servers, some of the other vehicles may not find the

requirements necessary to run their applications. Because of this, the network must

decide the allocation process in a way that all vehicles have the minimum resources

necessary.
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• Migrations: As previously discussed, the high mobility in vehicular scenarios is chal-

lenging to the dead from an edge and fog perspective. This is because as the vehicles

go from one network area to other services need to “follow” them through migra-

tions to new servers, to stay close and with a short latency. It is not guaranteed that

the migrations will happen promptly, or that the target server has enough resources

to support the new vehicle, so the network must plan for migrations proactively to

reduce failures and service interruptions.

• Virtualization: The offloading services in the servers must be isolated, such as ser-

vices in cloud data centers. This is done through the creation of Virtual Machines

and Containers. Virtual Machines (VMs), while being more replicable, are heavy

and must carry the entire platform on which services run, while containers only need

application-specific files. Migrations may be done transferring the VMs or contain-

ers through the backhaul to the new servers. Transferring VMs will induce a higher

workload in the network than containers.
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CHAPTER 3

Related Works

This Chapter showcases the main recent works in the state-of-the-art that tackle

the research problems present in this dissertation. We define the main shortcomings of

each work and present the best research directions folowed our solutions.

3.1 Research Problem #1: Handover in Ultra-Dense

Networks

Gong et.al [26] proposed a Fuzzy Analytical Hierarchical Process (FAHP) al-

gorithm to reduce failure and ping-pong probability in Heterogeneous Ultra-dense by

defining a Time-To-Trigger (TTT) during handover execution. The proposed mechanism

considers a two-tier heterogeneous network, in which the tier of the cells is given by a

Poisson Point Process, which may result in unrealistic scenario deployment. In such a

case, it may be better to follow 3GPP guidelines for a realistic scenario. Handover pro-

cedures from the macrocells to small cells and vice versa are implemented in a similar

manner, which is a valid approach, and handover failures are implemented analytically.

The authors use the remaining time in the cell coverage and the cell traffic load as a factor

in their Fuzzy systems, which must be normalized since they are different measures with

different ranges. Although it highlights the importance of a multi-parameter handover

decision, the use of TTT can have undesired effects, such as link failures and delayed

handovers [32]. Simulations are carried out to validate the solution compared to other

two handover approaches: a more simplistic, more reliable cell algorithm, and a handover

based on node movement. These are relatively simple solutions, and it is unclear how the

proposed algorithm would work against more recent works in the state-of-the-art.

Another work built on top of a Fuzzy system is proposer by Silva et.al. [60],
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which proposes an adaptive TTT threshold for handover based on Fuzzy logic and user

speed. Such a handover algorithm collects mobility parameters to predict user location

for content dissemination, and not for handover purposes, showing that offloading from

macrocells to Small Cells can be essential in a heterogeneous environment. The proposed

solution evaluates a preliminary condition that states that any candidate cell must receive

a received power at least higher than the current one. If this condition evaluates true,

then the algorithm must define the most appropriate hysteresis value for the handover.

A wrong choice in this value may cause the nodes to remain in worsening connections,

or to facilitate ping-pong handovers. The Fuzzy parameters defined by the authors are:

node velocity, received RSRP; and received RSRQ. These parameters are put through

membership functions, and a set of rules which regulate the output—the defuzzification

process than finds the corresponding hysteresis value for the combination of inputs. One

of the main benefits of the proposed scheme is the reduced ping-pong rates in dense

scenarios. Simulations in a very dense scenario, in an area of 1km2, with 200 small

and two macrocells, show an improvement in the average number of handovers, handover

failure ratio, and ping-pong handover. However, the scheme is not intended for multimedia

traffic, so it does not consider QoE for decision making.

Another work that focuses on an adaptive Time-To-Trigger method for handover

optimization is proposed by Liu et. al. [36], who study the problem created by dense

deployment of small cells in the network. Frequently, users tend to be in the coverage areas

of more than one cell at a time, challenging the mobility management in the network,

increasing the frequency of handovers, and the number of ping-pong handovers. The

authors propose a joint Fuzzy and TOPSIS model for cell and Time-To-Trigger value

selection. The proposed model offers a handover scheme, which integrates both fuzzy

logic and multiple attributes decision algorithms (MADM). The authors also propose a

clustering approach to optimize the fuzzy membership function definitions. However, this

work is not tuned to the particular challenges of vehicular networks, as well as for the

distribution of multimedia content in the network.

Arshad et.al. [11] showed that handover introduces an overhead in the network

and is, sometimes, redundant. Skipping some handovers can be beneficial for the network

while maintaining a seamless QoS. However, that work offers small support for video

transmission and may not suit the strict requirements involved. Demarchou et.al. [23]

studied the challenge of reducing handover rates (i.e., , handover skipping) in ultra-dense

networks. That work considers the trajectory prediction in the skipping decision, but

only assumes a simple model based on position and velocity. Xu et. al. [68] proposed a

delay oriented cross-tier handover skipping to maximize the performance of low latency

applications in ultra-dense networks. Their work derived an analytical expression for

the adequate capacity of users during the handover execution and proposed a resource

allocation scheme in Target Cells to reduce blocking probability. It does not employ

predictive schemes, or mobility information into the decision, which may improve the

decision quality and positively impact user QoE.

Medeiros et. al. [43] showed the importance of performing a multi-criteria han-
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dover decision to balance metrics from different layers, namely, radio measurements, QoS,

and QoE. That work uses AHP to balance the metrics according to predefined impor-

tance levels assigned to each. Still, the algorithm presents high handover rates, which

is harmful to QoE in dense scenarios. Sargento et. al. [57] proposed a connection man-

ager for VANETs with heterogeneous technologies, VANET Connection Manager (VCM),

which is based on an Analytical Hierarchic Process (AHP) that combines information from

multiple sources (vehicle speed, GPS, heading, RSSI, and available technologies such as

DSRC/WAVE, IEEE 802.11 and 4G Cellular), and decides what is the best connection

available at all times, also trying to minimize the number of handovers. The AHP is opti-

mized using interaction with a Genetic Algorithm (GA). This approach includes mobility

prediction through the expected connectivity time but does not include QoE require-

ments. Zhang et. al. [72] proposed a classification of applications sensitive and insensitive

based on user experience. A handover decision switches to a more energy-efficient net-

work during idle timer and a high-performance network when predicted. Chen et. al. [17]

proposed a QoE estimation to correlate QoS and QoE to improve user satisfaction, not

focusing only on call blocking probability and handover dropping probability. However,

video sharing requires more subjective metrics to describe QoE, such as MOS, which can

be mimicked by machine learning algorithms and integrated into automated decisions.

Table 1 shows the presented related works organized in terms of three main

characteristics: the techniques used by the algorithm, the presence of a QoE assessment

toll, the knowledge of user mobility, and the used of a handover skipping strategy for

ultra-dense networks.

Table 1: Summary of analyzed handover algorithms for ultra-dense VANET scenarios
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Gong et al. [26] Adaptive TTT
Silva et al. [60] Adaptive TTT
Liu et al. [36] Fuzzy Logic

Arshad et al. [11]
Handover
Skipping

X

Demarchou et al. [23]
Handover
Skipping

Assumed present X

Xu et al. [68]
Delay-Oriented

Handover Skipping
X

Medeiros et al. [43] AHP X
Sargento et al. [57] AHP Expected contact time X
Zhang et al. [72] Q Learning X
Chen et al. [17] Q Learning X
HoVe Mobility Prediction + AHP X X X
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3.2 Research problem #2: Connected Autonomous

Vehicles and Service Migration

Allocating resources and performing computing tasks at the edge of the network

is a prominent solution for low latency and high bandwidth requirements for applications

and services in-vehicle environments. However, it brings with itself challenges concerning

resources and mobility management. Different approaches have been suggested in recent

years to solve these problems. One of the promising ones is the pre-migration of services

to follow the user’s mobility and keep low latency. This section reviews some of the

state-of-the-art solutions to these challenges.

Some works study the requirements of vehicular applications in autonomous and

connected vehicles, and the limitations of onboard units in performing the necessary com-

putations, such as Li et. al.[34]. The work proposes a computation allocation framework

for offloading of CAVs tasks from onboard units to Vehicular Edge Cloud Computing

(VECC). The proposed solution proves itself with greater energy efficiency by allocating

the minimum required resource blocks to each vehicle. However, this works does not tack

some of the critical issues VECC carries, including mobility and resource management.

In real-world scenarios, the accuracy of the mobility prediction decreases the

more extended the predicted period is. Yu et. al. [71] proposes an offline pre-migration

of services in mobile edge computing. The work uses a mobility prediction scheme to

minimize the average latency of the service in the long term. The algorithm, while finding

an optimal solution, may have limitations in real-time, as the processing is assumed to be

offline.

Other approaches assume mobility management in vehicular networks from a

transportation point-of-view. Liao et. al. [35] proposes a vehicle-as-a-service approach

to mobility management and computational tasks migration in edge-enable vehicular net-

works for path planning. This work takes advantage of the innate mobility of the vehicles

to distribute computing capability through the network evenly. This work assumes that

computing tasks can be done locally and does not consider the case of service migration.

However, the results do not show the impact of the proposed scheme in a real or simulated

vehicular scenario.

Chen et. al. [18] investigates the new paradigm of Cognitive Edge Computing.

In this work, cognitive engines in edge servers can learn the computing and network

resources available at the edge and solve the problem of communication bandwidth and

delay through the fusion of computing, communication, and storage. The introduction of

Cognition to the network operation showed that predicting user behavior can significantly

improve the quality level perceived by the end-user. However, it is not best suited for the

CAV use case, as it was designed for an application that is not as stringent in requirements.

Ouyang et. al. [49] tackles the problem of keeping services close to used in

edge computing scenarios, where user mobility is unpredictable. The system does not

need prior information about user mobility statistics, as it uses real-time optimization to
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reduce the problem’s complexity. The solution aims to reduce overall migration costs but

could be optimized for vehicular scenarios with specialized mobility models. Also, Gao

et. al. [24] proposes a heuristic-based migration algorithm to serve users with varying

deadlines, considering user-generated data and the contact patterns between the nodes.

Despite employing mobility models in the decision, the proposed solution lacks in terms

of QoS and radio resources support for the applications and services.

Table 2 summarizes the main characteristics of previous works in terms of support

for mobility prediction, the use of pre-migration, and the nature of the computation

(online/offline). Based on our analysis of the state-of-the-art, we conclude that the pre-

migration of decision tasks from CAV to edge servers with support for mobility prediction,

and an online decision scheme has not been done in the state-of-the-art, to the extent of

our knowledge.

Table 2: Summary of Existing Works for Service Migration for Edge-Enabled CAV

Work Pre-migration Mobility Support Online Computation
Yu et. al. [71] X X

Liao et. al. [35] X
Chen et al [18] X X
Li et. al. [34] X

Ouyang et. al.[49] X X
Gao et. al. [24] X X

MOSAIC X X X
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CHAPTER 4

A Handover Algorithm for Video

Distribution over Vehicular Networks

This section introduces the HoVe algorithm. Which provides handover with QoE

support for video flows in 5G VANETs, considering Navigation History, QoE, and radio

parameters for the handover decision. We consider a 5G scenario comprising Small Cells

and Macro Cells and a Traffic Management System (TMS). HoVe relies on AHP to adjust

the degree of importance of each parameter, as well as to compute the quality of each

available network to select the best network for the vehicle to connect.

4.1 Algorithm Description

The handover process is performed in three distinct steps: measurement, decision,

and execution. The first step consists of information gathering, where the algorithm

collects important metrics for decision-making, i.e., , radio resources, packet delivery ratio,

QoE, and Vehicle Mobility. Afterward, this information is evaluated in the Decision step

to choose the best network available. If the algorithm decides so, a handover is performed.

HoVe uses a seamless handover process (make-before-break).

The decision phase occurs individually in each cell, where the handover manager

entity receives measurements, performs the decision, and coordinates the handover ex-

ecution. Moreover, each network component has information about the location of the

network cells and can use it in the evaluation process.

Figure 4 illustrates the interactions between the vehicles, access points, and the

Handover Manager. Mobile nodes continuously monitor packet flows to obtain current

QoE levels; this information is then sent to the Handover Manager along with Radio
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Figure 4: System Overview

measurements and the vehicle’s coordinates. Navigation Information/routes of vehicles

are used to predict the user’s near future positions, and when all the inputs are available,

the AHP algorithm is executed to evaluate all networks. If a handover is necessary, the

current serving cell initiates the communication with the target cell and transfers the user.

HoVe is compatible with traditional handover protocols and can be easily integrated.

Wireless links may last for very short amounts of time due to the highly mobile

nature of vehicular networks. Therefore, the handover algorithm must choose a network

that remains available for a longer time window according to a short-term position pre-

dictor.

4.1.1 Mobility Prediction Scenario

We consider both ARIMA and KF as use cases for the mobility prediction tech-

nique considered by Hove, but it can be any other position prediction scheme. Both

ARIMA and KF can be used to predict the vehicle’s future position L(xi, yi, t+ 1) based

on the current one L(xi, yi, t). In this sense, Hove iterates the mobility prediction algo-

rithm every time a new measurement arrives, where the intervals between measurements

define the granularity of the filter. In our tests, we adopted the granularity of 1 second.

4.1.1.1 Autoregressive Integrated Moving Average

The Autoregressive Integrated Moving Average, ARIMA is a statistical model to

analyze and forecast time series. It works by taking values of series and making them

stationary if necessary. A stationary time series has no trend, and the amplitude of its

variations around the mean is constant. In the ARIMA model, future values of series are

assumed to be a linear combination of past values and past moving averages.

ARIMA is described as a 3-tuple (p, d, q), where p corresponds to the number of
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past measurements weighted in the estimation, d consists of the number of differencing

series to make statistically stationary, and q corresponds to the number of past moving

averages. The basic formulation of the model is given by Eq. 4.1. We denote past terms

as y, past moving averages as ε, while θ and φ are individual weights for each term and

will be trained by the model.

yt = θ0 + φ1yt−1 + φ2yt−1 + φ3yt−3 + · · ·+ φpyt−p

ε0 + θ1εt−1 + θ2εt−1 + θ3εt−3 + · · ·+ θqεt−q.
(4.1)

The number of past value terms and past moving averages depends on the stud-

ied series, where some series are mostly dependant on weighted past values and do

not need any moving average terms. The model can be represented by the notation

ARIMA(5, 1, 0), which means we use five past terms, perform one differentiation, and

consider no past moving averages. This configuration was found by means of a grid-search.

ARIMA is used to forecast a single-variable time series, and, thus, it has to be

done a training step separately for the latitude and longitude measurements. The first

step for the general ARIMA formulation is to define the differencing order, i.e., , the

number of times each term is subtracted from the next one, given by the parameter d,

as shown in Eq. 4.2). The ARIMA model can be used for the vehicle mobility prediction

L(xi, yi, t + 1). In this sense, the model must be trained for each vehicle separately and

for each coordinate (i.e., , latitude, and longitude).

yt =


Yt, if d = 0

(Yt − Yt−1), if d = 1

(Yt − Yt−1)− (Yt−1 − Yt−2), if d = 2

and so on

(4.2)

4.1.1.2 Kalman Filter

KF tries to estimate a state xt ∈ Rn based on previous state xt−1, i.e., , the filter

only needs the value of the previous state to estimate the next one. The state x in a KF

is a vector containing a pair of vehicle geographic coordinates gt, namely latitude and

longitude, at a given moment t (i.e., , L(xi, yi, t)). Explicitly, we model the process as in

a stochastic difference equation shown in Eq. 4.3. We denote A as a n × n matrix that

relates the previous state to the current one, and w ∈ Rn as noise estimation.

xt = Axt−1 + wt−1. (4.3)

The estimation considers a measurement given by Zk, as shown in Eq. 4.4. It can
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be modeled in terms of the prediction with a correcting factor H and a noise vk.

Zk = HXk + vk. (4.4)

We define x̂−k as previous state, xk as predicted state, and x̂k as following state,

where x̂−k and x̂k are real values of the process. We want to estimate xk based on the

measurement Zk. The previous and following errors are defined by e−k and ek, respectively,

as shown in Eqs. 4.5 and 4.6.

e−k = xk − x̂−k . (4.5)

ek = xk − x̂k. (4.6)

Also, the previous state covariance can be defined based on Eq. 4.7, and the

following state covariance by Eq. 4.8 as the expected value of the error, times the error

matrix transpose. The goal of the filter is to minimize the error covariance Pk.

P−
k = E

[
e−k e

−T
k

]
. (4.7)

Pk = E
[
eke

T
k

]
. (4.8)

We express the following state as a linear combination of the previous state, and

a correction term proportional to the difference between measurement and state value, as

shown in Eq. 4.9, the value of x̂k corresponds to the vector of predicted coordinates in

the next measurement gt+1.

x̂k = x̂−k +K
(
zk −Hx̂−k

)
. (4.9)

The matrix Kn×m is the gain, which should minimize the following error covari-

ance. We can minimize the error by replacing Eq. 4.9 into Eq. 4.6 and, then, deriving the

result. In this way, final formulas for computing the gain of the filter to be used in the

estimation is given by Eqs. 4.10 and 4.11.

Kk = P−
k H

T
(
HP T

k H
T +R

)−1
. (4.10)

Kk =
P−
k H

T

HP−
k H

T +R
. (4.11)
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4.1.1.3 Mobility Prediction Accuracy

We tested the mobility prediction accuracy of KF and ARIMA in a real-world

vehicular dataset to choose one of them as part of the handover algorithm. In this sense,

we considered a vehicular mobility trace collected from approximately 500 taxis from

San Francisco [54]. The dataset consists of GPS measurements of 500+ cabs in the San

Francisco bay area over one month, generating more than 10 million samples. We consider

ARIMA(5,1,0) in such a dataset, i.e., , it means that we consider two past values, the

series is direffenced twice to make it stationary, and one is moving average term. These

parameters were found using a Grid Search estimator for better performance, which tests

different configurations to find a local optimal configuration. We consider 60% of the data

for training and the remaining 40% for tests.

Figure 5(a) shows the average Root-Mean-Square Deviation (RMSE) for the

ARIMA and KF to predict each vehicle location in the dataset. By analyzing the results,

we can observe that KF has an error 85.7% higher than the ARIMA. Vehicle movement

may be irregular and non-linear for the most part, but KF is more accurate when the

analyzed data has a linear nature due to its interactive nature. In this sense, KF needs

time to adjust to mobility changes in parameters such as speed and direction, i.e., , KF

makes adjustments online. On the other hand, ARIMA can predict the mobility pattern

with high accuracy after training and is very robust even with non-linear data. RMSE

results can be explained using Figure 5(b), which shows the vehicle’s longitude over time

for a given vehicle. By analyzing the results, we can conclude that ARIMA predictions

are much closer to the original data points. In contrast, KF predictions, in some cases,

are very distant from the original data points. For instance, at sample 30, the vehicle

turned (left or right), and ARIMA can predict such a vehicle mobility pattern, while the

KF does not detect it.
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Figure 5: Mobility prediction results (a) RMSE and (b) Vehicle Longitude predictions for
ARIMA and Kalman Filter applied for one vehicle of San Francisco Taxi Dataset

4.1.2 QoE Assesment

Hove uses pMOS, a low complexity QoE monitor presented by Medeiros et. al.

[44]. Videos are typically composed of the frame types, Intra-coded picture (I), Predicted
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picture (P), and Bidirectional predicted picture (B), each with a different degree of im-

portance when reconstruction the video sequence. The I-Frames carry all the information

needed in a picture, as P-Frames and B-Frames only carry the bits of information that

changes from the previous image to the current.

pMOS consists of a random forest that receives as input the loss rates for I-, P-

and B-frames and outputs a Mean Score Opinion (MOS) value. pMOS was trained with

a subjective analysis performed by human subjects for imitating human perception to

frame losses. In this context, users consuming video content identify lost frames in the

video and their respective types. The loss-ratio for each frame type is reported to HoVe

and fed to the pMOS module. Furthermore, radio measurements are also traditionally

reported to HoVe. SINR uses a signal quality metric and is also weighted in the handover

decision.

The handover Manager finds the best network given the collected metrics, config-

uring a Multiple-Criteria Decision-Making problem. We chose AHP to balance the input

metrics. AHP considers a pairwise comparison between the numerical values of each col-

lected parameter and their relative degrees of importance, to adjust their weights of each

parameter at runtime. The weights of the inputs must be defined when configuring the

algorithm. High weight means more importance should be attached to this particular

metric, and we define five importance levels, as shown in Table 5.

Table 3: Pairwise Context Importance

ci,j Definition
4 i is much more important than j
2 i is more important than j
1 i is as important as j
1/2 i is less important than j
1/4 i is much less important than j

The Handover Manager constructs for each vehicle a matrix to compare all pairs

of metrics. We denote ci,j as how important the ith element is compared with the jth

element. Also, A = (Ci,j)n×n represents the comparison matrix, where n denotes the

number of elements to be compared, as shown in Eq. (5.1).

A = (Ci,j)n×n =


c1 c2 c3

c1 c1,1 c1,2 c1,3
c2 c2,1 c2,2 c2,3
c3 c3,1 c3,2 c3,3

 (4.12)

To guarantee consistent QoE throughout a transmission, the pMOS metric has

the highest priority compared to mobility and QoS and Signal. We define the trajectory

parameter as the estimated distance between the vehicle and the access point in the

short-term future. QoS and Signal parameters are combined into a single input for the
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algorithm.

I =


QoE Distance QoS/Signal

QoE 1 2 4

Distance 1/2 1 2

QoS/Signal 1/4 1/2 1

 (4.13)

After the selection of the relative importance, the matrix is normalized by dividing

each element by the sum of its column and finding the eigenvector for the matrix. For

instance, in Eq. 4.13 we find the eigenvector W = [0.57 0.28 0.14], meaning that that

QoE will have a weight of 0.57, 0.28 for Distance and 0.14 for QoS/Signal.

The Handover Manager computes the score Si for all available networks based

on Eq. (4.14), where ci represents the weight for a given metric, and Pj is the value for a

given metric, i.e., , QoE, QoS, and Link Duration, obtained in the handover measurement

phase. Finally, the handover Manager selects the cell with the highest Si value, which

is the most suitable access point for the vehicle to connect at the moment and what the

video.

Si =
n∑

j=1

cj × Pj (4.14)

Figure 6 details the steps involved in the HoVe execution. The current serving cell

periodically requests measurement reports to the user, in our case, the vehicle. The vehicle

evaluates the current QoE, in the case of video content being consumed, and sends it to its

radio, QoE, and coordinates measurements to the current cell. If a handover is necessary,

the Serving Cell requests the transfer to the Target Cell, and the channel allocation and

synchronization can begin. When the process is complete, the user sessions will now be

handled by its new serving cell.

4.2 Evaluation

4.2.1 Simulation Description and Metrics

HoVe was implemented and tested on the NS-3.271 simulator, where 33 simula-

tions were conducted with different randomly generated seeds that were fed to its default

pseudo-random number generator (MRG32k3a). Thus, it is possible to provide indepen-

dent streams of random variables for each probabilistic model used. Results show the

values with a confidence interval of 95%.

NS-3 implements the LTE protocol stack for communication between the mobile

user with the radio base station. We consider simulation parameters presented by Tar-

tarini et al. [63]. The scenario is chosen as a typical urban ultra-dense vehicular network

1http://www.nsnam.org/
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Figure 6: Execution Flowchart for HoVe

with two tiers, composed of two High Power eNodeBs (Macro Cells / LTE) and Low

Power eNodeBs (Small Cells / WiFi) randomly distributed in the simulation scenario. In

this scenario, nodes move in a grid topology at a 2D rectangular area of 4km2 (2000m ×
2000m).

For the simulation of traffic and vehicle mobility, we employed the Simulation

of Urban Mobility (SUMO)2, which is an open-source traffic simulator to model and to

manipulate objects in the grid scenario. SUMO allows us to reproduce the desired vehicle

movements with a predefined path and speeds based on empirical data. We consider

a scenario composed of vehicles at different speeds as expected in real cities (ranging

between 10-70 km/h).

We considered video sequences with different motions and complexity levels, i.e.,

Container, Mobile, and Highway, which are downloaded from a well-known Video-trace

repository3. Even small differences in the videos’ characteristics can influence the obtained

QoE values [76]. These videos mainly have a duration of 10 seconds (except Highway

with 20 seconds) and 300 frames each (except Highway with 600 frames), encoded with

an H.264 codec ranging from 210 kbps (Highway) up to 230 kbps (Container), 30 fps and

intermediate size (352 x 288 pixels). It should be noted that all the videos evaluated

are streamed in a loop. The decoder uses a Frame-Copy method as error concealment,

replacing each lost frame with the last received one to reduce frame loss and to maintain

2http://sumo.dlr.de
3http://media.xiph.org/video/derf/
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video quality. The main simulation parameters can be seen in Table 6.

Table 4: Simulation Parameters

Parameter Value
Nodes speed [10− 70] km/h
Number of UEs 60
Number of Macro Cells 2
Number of Small Cells 50
Macro Cell Transmission Power 46 dBm
Small Cell Transmission Power 23 dBm
Propagation Loss Model Nakagami
Scenario Size 2km× 2km
Network Topology 6× 6 grid
Video Tested Highway, Container and Mobile
Simulated Time 60 Seconds
Transmission Start Time 20 Seconds
Number of Simulations 33

The handover algorithms compared are implemented on the LTE-handover API

present in the NS-3 Simulator, where all the relevant metrics can be accessed and evalu-

ated for the decision and execution of the handover. NS-3 implements a hard handover

mechanism (break-before-make), and the measurements and evaluations are performed

periodically.

HoVe is tested against the SER [44] algorithm, and standard LTE handover mech-

anisms such as RSSI-based handover and Strongest Cells referred to as PBGT (Power Bud-

get). SER is a QoE-aware handover algorithm for Heterogeneous Networks (HetNets); it

has shown superior quality in the delivery of videos for mobile users. The Strongest Cell

handover performs a signal strength-based decision, in which the handover is executed if

a neighbor cell’s received strength is superior to the serving cell’s plus a hysteresis value.

Such a difference is maintained throughout a previous set Time-To-Trigger [2]. Further-

more, the RSSI-Based Handover Algorithm uses LTE’s events A2 and A4 to trigger the

handover execution. Both solutions take into account solely radio measurements in the

process. RSSI-based and Strongest Cells are present by default in the simulator. SER

was implemented as described in the paper, where it is defined [44].

QoE metrics overcome the limitations of QoS metrics for video quality assessment

since QoS metrics fail to capture subjective aspects of video content related to the human

experience [9]. In this way, we consider Structural Similarity (SSIM) as the QoE metric

to evaluate the end-users’ video degradation. SSIM compares the variance between the

original video and the original sequence concerning luminance, contrast, and structural

similarity. SSIM values range from 0 to 1, as defined in Chapter 2.
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4.2.2 Simulation Results

Figure 7 shows the average SSIM achieved by each algorithm tested in the form

of a bar chart, with a confidence interval of 95%. We can see that HoVe was able to

deliver videos with higher user experience than competing algorithms. Even SER, which

considers QoE, wasn’t able to adapt well to a denser scenario, causing decreased QoE to

the users. We consider that a satisfactory user experience requires an SSIM of at least

0.8. HoVe shows an average of 0.92. Considering the lowest bound of HoVe’s confidence

interval with the other algorithm’s highest bound, HoVe performs 18% better than SER,

19% better than the RSSI-based, and 19% better than PBGT.
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Figure 7: SSIM Obtained by Each Algorithm Over the Simulations

Figure 8 shows the average amount of handovers necessary to deliver a single

video as the simulated time increases. We notice that the SER algorithm performs the

highest amount of handovers, given that it has no constraints like a hysteresis or a Time-

To-Trigger. The RSSI-based approach also has a higher number of handovers, as it is

more sensitive to channel variations. At the same time, the Strongest Cell mechanism

makes the least amount of handovers among the tested algorithms because it tends to

connect to Macro Cells more frequently, which can be less effective in terms of bandwidth.

We can see that after 20 seconds into the simulation, the rate at which handovers are

performed stabilizes as the decision is optimized to maximize the duration of the link

while maintaining acceptable QoE levels.
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Figure 8: Average Number of Handovers in the Transmission of one Video

Figure 9 shows that proper QoS levels were also ensured with the use of HoVe,

which maintains the PDR at around 80%, at least 30% more than any of the other

algorithms. SER, RSSI-based, and PBGT maintain the PDR between 50% and 40%, due
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to more inefficient mobility management: a high number of handovers in the case of SER

and RSSI-based, and keeping connected to an overloaded cell in the case of PBGT.
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Figure 9: PDR Obtained by Each Algorithm

A random video was selected to illustrate the behavior of the perceived QoE at

each moment of the transmission regarding SSIM, as shown in Figure 10. HoVe provides

a consistently better SSIM score at each frame of the video throughout all of its duration.

We can see three moments where the SSIM value for HoVe dropped, corresponding to

instants where a handover was performed. SER delivered better QoE than RSSI-based and

PBGT. However, the quality was volatile. We notice that the quality of the transmission

dropped around frame #1241. This is because this is a more complex frame with a higher

probability of being lost, compromising than the following frames in the GoP.
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Figure 10: SSIM For Each Frame of Video number #42

Figure 11 shows the ping-pong handover rate by HoVe, SER, RSSI-based, and

PGBT handover algorithms. It is essential to highlight that we consider a ping-pong

handover as soon as a user leaves a cell and returns to it within a window of 4 seconds.

By analyzing the results, we can conclude that HoVe keeps the ping-pong rate around

2%, which is an indication of a better decision policy that avoids such a phenomenon.

As mentioned before, PBGT performs a smaller amount of handovers, and, consequently,

has a smaller ping-pong probability within the considered window. On the other hand,

NC-Skipping, SER, and SINR-based algorithms have higher ping-pongs, due to the fact

they do not have a transparent barrier against it. Even with a skipping mechanism, these

approaches are not coupled with a multiple criteria strategy and are then also susceptible

to ping-pong.
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Figure 11: Ping-Pong Handover ratio by different handover algorithms

In Figure 12, random frames were selected from the videos transmitted under

each algorithm. Figures 12(a), 12(f) and 12(k) show the frames from the original videos

transmitted, alongside with the versions delivered to the end-users by each algorithm

under the same scenario. We notice that frames are significantly closer to the original

when HoVe is used compared to the other algorithms tested. The most accentuated

degradation is perceived on the videos with the most motion, like Highway and Mobile,

since it makes them more sensitive to frame losses, causing the most impact on the QoE

to end-users.



4.2 Evaluation 57

(a) Highway - Orig-

inal

(b) Highway - HoVe (c) Highway -

RSSI-based

(d) Highway -

Strongest Cell

(e) Highway - SER

(f) Container -

Original

(g) Container -

HoVe

(h) Container -

RSSI-based

(i) Container -

Strongest Cell

(j) Container - SER

(k) Mobile - Origi-

nal

(l) Mobile - HoVe (m) Mobile - RSSI-

based

(n) Mobile -

Strongest Cell

(o) Mobile - SER

Figure 12: Frames #111 from Highway, #213 from Container and #151 from Mobile



58

CHAPTER 5

A Migration Algorithm for Autonomous

Vehicles

This Chapter details MOSAIC, a server tier-, computing resources-, QoS-, and

migration time-oriented service migration and resource management algorithm for intra-

tier and inter-tier communication in vehicular edge and fog computing. MOSAIC takes

into account CAV’s mobility information obtained using an Intelligent Transportation

System; available computing resources in the fog and edge; delay in the candidate servers;

and migration cost, in terms of time necessary for migration. The algorithm uses a multi-

criteria decision-making scheme to select the best server, on edge or in a fog, to provide

computing offloading for the CAV with low latency and high throughput.

5.1 MOSAIC Algorithm

MOSAIC assumes that service migrations in this scenario are preferably made

in a live manner, i.e., a service instance can only be interrupted after a copy of it has

been transferred to the target edge server. This is achieved by performing live service pre-

migrations based on user mobility data. MOSAIC assumes a scenario containing CAVs,

cellular networks, and N-Tier fog and servers, such as presented by state-of-the-art works

[37, 71].

5.1.1 Scenario Overview

The scenario is composed of a set of n CAV. Each CAV is assumed to have a

radio transceiver to enable the communication between vehicles (V2V) and with an in-

frastructure (V2I). CAVs have a set of sensors that generate data with a rate of D; this
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data is later transmitted to the vehicle’s serving cell through radio interfaces. In this

sense, the scenario is composed of a set of cells, where each cell has an individual identity.

We consider that each cell in the scenario is associated with an Edge server through a

reliable point-to-point link. Closer to the network core, one tier above the edge servers in

computing power, we consider a set of m fog servers. This is characterized by increased

latency in comparison with the edge servers and increased computing capabilities. Addi-

tionally, we consider a centralized orchestrator in which MOSAIC is executed, such as the

one presented in [29]. The orchestrator manages things such as the available resources

in each edge server, schedules migrations, triggers the mobility management, and other

tasks.

We assume an Intelligent Transportation System (ITS) aware of the vehicle’s

trajectories, both past trajectories, and planned routes. In this context, the orchestrator

is aware of cell’s coverage areas through a Voronoi Tessellation [13], and that handovers

happen when a CAV leaves a coverage area for another, therefore it is possible to estimate

when topology changes are going to happen.

Servers must perform computation tasks that are either part of a container, or a

Virtual Machine (VM) instance. Servers can connect through a wired channel to perform

the migration of Containers and VMs as expected in 5G and 6G networks. Also, edge

and fog servers can communicate and perform data transfers between each other through

the network.

Figure 13 show the systems’ components in terms of the layers they belong to.

We can define a set of five different layers that compose the system, namely, cloud layer,

mobility management layer, fog layer, communication layer, and data source layer. Each

layer is responsible for specific tasks: the data source layer performs sensing in general, the

communication layer is responsible for wireless data transmissions, the fog layer provides

scalability for the computing tasks, the cloud layer performs the management of the

network, and the mobility management layer is an application layer connected to the

system through the cloud layer [30].

5.1.2 Algorithm description

MOSAIC requests to the clients of each edge server, the latency and RTT values

that they are experiencing, and a threshold based on the application are applied to define if

the latency if low enough or not. To guarantee safety applications for CAV, a maximum

latency of 10ms is necessary [61], thus this is the threshold applied by MOSAIC. The

threshold can be adapted to different application requirements.

To execute a seamless pre-migration, our orchestrator can forecast imminent

changes to network topology and recalculate the appropriate servers for each application

under the new topology. For that, we consider that the orchestrator has the information

about cell coverage areas and CAV trajectories, and can perform migrations proactively.

In current LTE networks, the network must manage session transfer and synchro-
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Figure 13: MOSAIC Scenario Components Overview

nization between the user and the new network. In an edge scenario, a service migration

may also be necessary, as a handover means that the previous edge server may not be the

best or closest.

As a general rule, every handover calls for a service migration in an edge scenario.

However, cell coverage areas may overlap, providing multiple options of edge server and

cells. It is also essential to check if the target edge server has enough resources for the

application.

5.1.3 Migration Decision

For each server, MOSAIC keeps track of the following parameters at all times:

tier of the server, meaning if it is a fog or an edge server; Available Resources free in the

server; QoS, defined here as the average latency form the server to its connected CAVs,

and estimated time to perform a migration to the server, based on backhaul link capacity,

and the size of the migration. For the QoS and Migration Time parameters, which must

be minimized, we consider the inverse of the numerical value of the parameter in the

computation.

MOSAIC finds the best edge server given the collected metrics configuring a

Multiple-Criteria Decision-Making problem. We chose AHP to balance the input metrics

since it considers a pairwise comparison between the numerical values of each collected

parameter and their relative degrees of importance, to adjust their weights of each pa-

rameter at runtime. The weights of the inputs must be defined when configuring the

algorithm. High weight means more importance should be attached to this particular

metric, and we define five importance levels, as shown in Table 5.

MOSAIC constructs for each vehicle a matrix to compare all pairs of metrics. We

denote ci,j as how important the ith element is compared with the jth element. Also, A =
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Table 5: Pairwise Context Importance

ci,j Definition
4 i is much more important than j
2 i is more important than j
1 i is as important as j
1/2 i is less important than j
1/4 i is much less important than j

(Ci,j)n×n represents the comparison matrix, where n denotes the number of elements to

be compared, as shown in Eq. (5.1).

A = (Ci,j)n×n =


c1 c2 c3 c4

c1 c1,1 c1,2 c1,3 c1,4
c2 c2,1 c2,2 c2,3 c2,4
c3 c3,1 c3,2 c3,3 c3,4
c4 c4,1 c4,2 c4,3 c4,4

 (5.1)

The metrics collected are placed in the matrix as Eq. 5.2 shows. Since the

priority for MOSAIC is to keep a low latency for CAVs, the Tier parameter is the most

important one, two times more important than the Resources, four times more important

than the QoS, and also four times more important than the Migration Time. The rest of

the comparisons are made to be coherent with these values, as shown in Eq. 5.2. We find

the eigenvector of the matrix (Ci,j) by dividing each element by the sum of its column,

obtaining the eigenvector [0.50 0.25 0.125 0.125], which means that Tier has weight 0.50,

Resources have weight 0.25, 0.125 for the QoS, and 0.125 for the Migration Time. Note

that the consistency ratio of the decision matrix is 0% (lower than 10% is acceptable). In

this way, MOSAIC performs a product between the eigenvector and a vector that stores

the measured values, obtaining the score for each available server.

A = (Ci,j)nxn =


Tier R QoS T

Tier 1 2 4 4

R 1/2 1 2 2

QoS 1/4 1/2 1 1

T 1/4 1/2 1 1

→ (5.2)

→ [0.50 0.25 0.125 0.125]

Algorithm 1 presents how the migration process is triggered. The first decision of

MOSAIC is whether migration is necessary of not. Migration may be necessary because

of vehicle mobility, as it gets more distant from the server, and the latency increases, or

for QoS reasons (a server is too loaded, for example).

Algorithm 2 shows how MOSAIC chooses the edge server to which the user sesison
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Algorithm 1: MOSAIC monitor

1 while vehicle is connected do
2 Consult mobility;
3 if handover is eminent then
4 MOSAIC MIGRATION;

5 Measure QoS;
6 if QoS is below to the threshold then
7 MOSAIC MIGRATION;

Algorithm 2: MOSAIC MIGRATION

Data: Number of Hops Acceptable
1 List available servers;
2 for Each available edge server do
3 Get QoS for the server;
4 Estimate the number of hops from user to server;
5 Run AHP and give the server a score;

6 while Server has not been chosen do
7 Get a server with the greatest score;
8 Estimate migration time;
9 if Migration can be done on time then

10 Choose this server as target;

11 else
12 Remove this server from list;

will be migrated by the MOSAIC MIGRATION method. The essential characteristic

of the decision is whether the target server can deliver the latency and computation

requirements and, if so if the migration can be made promptly. MOSAIC assumes that

each edge server can assess the link bandwidth from itself to other edge servers, and uses

this bandwidth value to estimate the time it would take to migrate the user session to

candidate edge servers. MOSAIC is relatively low complexity, as the AHP calculation

is not an expensive operation. The complexity of the algorithm is proportional to the

product of the number of CAVs and the number of Edge Servers.

As soon as MOSAIC detects that migration is necessary, the algorithm must

evaluate all available servers in the vehicle routes (servers that would meet distance and

latency requirements) regarding the server’s resources and the cost to migrate the service

to that specific server.
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5.2 Evaluation

This section describes the evaluation methodology, including scenario description,

simulation parameters, and metrics used to evaluate the performance of different migration

algorithm for Edge-enabled CAV scenarios.

5.2.1 Scenario description and methodology

We implemented MOSAIC and other three existing migration algorithms by using

NS-3.291 simulator, which implements the LTE protocol stack for V2I communication. In

our scenario, we consider a 2km × 2km area comprising 20 ENodeBs randomly allocated,

as well as 30, 60, and 90 CAV, respectively. The simulation considers the Nakagami

path loss model, which can be very suitable for urban scenarios [55]. We conducted 33

simulations with different randomly generated seeds fed to the simulator’s pseudo-random

number generator (MRG32k3a). Results show the values with a confidence interval of

95%. Simulation parameters can be seen in Table 6.

For the simulation of traffic and vehicle mobility, we employed the BonnMotion2,

which is a topology generation and analysis tool. BonnMotion allows us to reproduce the

desired vehicle movements with a predefined path and speeds based on empirical data.

The CAVs move at different speeds as expected in real cities (ranging between 10-70

km/h).

Table 6: Main Simulation Parameters

Parameter Value
Number of CAVs [30, 60, 90]
Number of Cells 20
Average Speed of Vehicles 20 m/s
Mobilty Model Manhattan Grid
Propagation Loss Model Nakagami
Scenario Size 2Km× 2Km
Downlink Frequency 2120 (MHz)
Uplink Frequency 1930 (MHz)
Duration of the simulation 120s
Size of VMs 10GB
Size of Containers 1GB

MOSAIC is tested against the other three service migration strategies. First, a

scenario where no migrations happen at all; in this scenario, the edge server to which the

CAV is initially connected keeps providing service until the end of the simulation. Then,

a greedy strategy was also implemented, where the service is migrated to the new closest

edge server after every handover. The last strategy, proposed by Li et al. [33], consists

1http://www.nsnam.org/
2https://sys.cs.uos.de/bonnmotion/
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Figure 14: Average Latency for Different Number of Vehicles in a CAV scenario

of QoS-aware service migration, aiming to minimize latency. All services running in the

network are randomly assigned to either a VM or a container, which influences the size

of the task.

5.2.2 Results

We analyse the performance of MOSAIC compared to other state-of-the-art works

from the perspective of some of the main metrics in service migration and CAV experi-

ments: latency, probably the main metric in the scenario, providing the main requirements

for the presence of CAVS; migrations attempted and failed, which have to do with the

resources used in the network in consequence of the migrations executed; and monetary

cost of the algorithm utilization, which is important to scale the solution in real-world

scenarios.

Figure 2 shows the average latency each algorithm obtained in the 30, 60, and 90

CAV scenarios, respectively. We can see that only MOSAIC is able to maintain latency

for its clients below 10ms in all of the scenarios. The QoS-based algorithm was able to

achieve the minimum latency requirement only on the 30 CAV scenario. However, it was

not able to keep up with the latency as more CAV entered the network and used up edge

resources. We can see that the greedy algorithm has more unpredictable behavior due

to trying to perform excessive migrations, resulting in a significant number of failures.

The No-Migration approach resulted in steadily increasing latency as more CAVs were

considered, as expected.

Live service migrations are a time-sensitive task, with strict deadlines. If migra-

tion is not finished in time ( i.e., the service is not in the edge server by the time the

CAV has left its coverage area), the task is no longer useful. Migration failures take up

backhaul resources and compromise QoS. Complementing the previous results, Figure 3

shows the network’s average number of migration failures under each of the algorithms

in the 30 CAV scenario. We can see that MOSAIC had the fewest migration failures out

of all analyzed approaches (keeping it around 5 per simulation), except for No-Migration

(which does not perform any migrations). This is a consequence of MOSAIC’s care-

ful resource management and mobility information. The QoS-based approach performed
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Figure 15: Migration Failures for Different Algorithms in a CAV scenario
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Figure 16: Number of Migrations Attempted by Each Algorithm

around 37 failed migrations, much fewer than the Greedy approach, in which around 120

migrations, on average, have failed per simulation, because this approach does not check

for resources, or deadlines when performing migrations.

Figure 4 represents the average number of migrations attempted by each algo-

rithm during the simulations. We can see a similar pattern of the one in Figure 3. We

understand that MOSAIC had a failure rate of around 5%, the greedy approach had al-

most 52% of its migration attempts failing, and the QoS-based approach kept it around

27%. This behavior is explained by MOSAIC’s mobility management module. When

given the vehicle’s trajectory information and resource information, the algorithm may

be exact in its migration requests, avoiding unnecessary ones.

However, how MOSAIC does not perform any sort of cost management, po-

tentially have higher monetary costs. Therefore, we use the AWS TCO Calculator3 to

calculate the financial cost of CPU time per hour. The CPU time cost proportionally

decreases when renting a higher number of CPU cores in the same AWS region. We

considered the deployment into two regions, corresponding to when the edge services are

on the cell, which the CAV is directly connected to, and the case in which the service is

more distant than the user. Costs for the tiers used are shown in Table 7.

Figure 5 shows the average monetary cost for the offloading of each vehicle to

the edge under each of the algorithms tested, according to the values of Table 5. We can

3https://awstcocalculator.com/
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Figure 17: Monetary Cost per Vehicle per Hour Under Each Algorithm

see that MOSAIC, together with the QoS-based approach, have the highest monetary

costs for their execution, since they, more often than not, keep their users in a tier 1

server. However, only MOSAIC is able to do so while maintaining acceptable QoS values.

No-Migration has the lowest cost since most of its users have been allocated in a fog sever

due to the lack of proper resource management. The greedy approach, however, had an

inferior server utilization cost compared to MOSAIC. This is because although it always

attempts to keep users in Edge servers, they fail, and users are allocated to cheaper fog

servers.

Table 7: Monetary Cost of CPU Utilization

Node CPU Cores Memory Storage Cost/Hour
Tier 2 8 32 GB 2 TB $0,22896
Tier 1 4 16 GB 1 TB $0,42408
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CHAPTER 6

Conclusions

As applied in previous generations of mobile communications, mobility manage-

ment must be redesigned to support modern network deployment strategies. Such net-

works are increasingly dense and must support a wide range of services, such as real-time

and low latency communications, with various requirements. In this context, user devices

are more heterogeneous than ever and are incorporated into wearables, smartphones,

tablets, and even vehicles.

In the case of vehicles, especially, the network must adapt to high mobility rates

and velocities without disrupting the services being consumed by mobile users. Users

in vehicles will consume a large amount of video-based content, which is expected to be

delivered with QoE support. The first problem tackled in this dissertation is a handover

algorithm for video transmission over vehicular networks with QoE support called HoVe.

HoVe takes into account the estimated QoE value of the video flow, a user mobility pre-

diction scheme, QoS, and signal intensity associated with wireless cells. Simulation results

show an improvement of 18% in terms of QoE when HoVe is used, and an improvement

of up to 30% in terms of packet delivery ratio.

However, vehicular scenarios bring a challenge in terms of computation as well.

The heavy presence of Connected Autonomous Vehicles (CAVs) in future networks is ex-

pected, and In this dissertation, we propose a service migration algorithm for edge-enabled

vehicular networks. In such a context, autonomous vehicles must offload computation to

fog and edge servers to process vast amounts of data within tight latency requirements. We

propose the MOSAIC, a migration decision algorithm for CAVs in edge-enabled scenarios

capable of choosing the best edge servers to provide computation offloading for CAV.

onsiders server tier, computing resources, QoS, and migration time offer low latency,

and high throughput using predictively migrating CAVs offload instances to their future

servers. Based on simulation results, we show that chieves superior performance in terms
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of throughput, latency, and migration failures compared to state-of-the-art algorithms.

6.1 Future Works

The mobility management field spans over several areas in computing and network

management. We list some of the possible directions for research as follows:

1. Migration of heterogeneous services in smart city scenarios: smart cities are a great

market driver and characterized by the heady presence of heterogeneous devices,

networks, and services. Managing the location of said serviced in an edge-enabled

smart city is a challenging and critical task.

2. Group mobility assessment: humans don’t often move through a scenario randomly,

but rather with underlying motivations that may be common to groups of different

people. Analyzing group mobility patterns can improve network management and

service provisioning.

3. Semantic trajectory searches: This research topic consists of finding complemen-

tary information to user mobility, beyond geographical coordinates. Things such as

weather, health status, social media posts, and local events can be assessed and cor-

related to user mobility for complete information from a prediction and management

point-of-view.

6.2 Published Works

The main results published in this dissertation were published in the following

works:

1. [51] - PACHECO, L.; ROSÁRIO, D; CERQUEIRA, E; VILLAS, L. Service mi-

gration in edge computing environments for connected autonomous vehicles. SBRC,

SBC, 2020.

2. [53] - PACHECO, L. OLIVEIRA, H; ROSÁRIO, D; CERQUEIRA, E; BRAUN,

T. Service migration in edge computing environments for connected autonomous

vehicles. ISCC, IEEE, 2020.

3. [50] - PACHECO, L.; MEDEIROS, I; SANTOS, H; OLIVEIRA, H.; ROSÁRIO, D;

CERQUEIRA, E; NETO, A. A handover algorithm for video sharing over vehicular

networks. LADC, IEEE, 2019.

4. [52] - PACHECO, L.; ROSÁRIO, D; CERQUEIRA, E; VILLAS, L; BRAUN,

T. Service Migration in Heterogeneous Smart City Networks networks. MSWIM,

ACM, 2019.



6.2 Published Works 69

Complementary results were published in various other works, listed below:

4. [20] COSTA, A.; PACHECO, L; ROSARIO, D; CERQUEIRA, E; VILLAS, L;

SARGENTO, S; LOUREIRO, A. Skipping-based handover algorithm for video dis-

tribution over ultra-dense vanet. Computer Networks, Elsevier, 2020.

5. [42] - MATNI, N.; MORAIS, J.; PACHECO, L; OLIVEIRA, H.; ROSARIO, D;

CERQUEIRA, E; NETO, A Experimenting long-range wide area network in an

e-health environment: Discussion and future directions. IWCMC, IEEE, 2020.

6. [75] - ZHAO, Z.; KARIMZEDEH, M; PACHECO, L; SANTOS, H; ROSÁRIO, D;

CERQUEIRA, E; BRAUN, T. Edge-based Mobility Management with Transferable

Reinforcement Learning Trajectory Prediction. TNSM, IEEE, 2020.
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