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RESUMO

O mercurio € um metal altamente tdxico e esta entre as trés substancias com
maior potencial de ameaca a saude humana. Sua espécie organica, o metilmercurio,
€ especialmente perigosa para a saude humana devido sua facilidade em atravessar
barreiras biolégicas. Sendo assim, o cérebro € um alvo critico para o metilmercurio,
onde é capaz de causar disturbios neuroldgicos, incluindo déficit motor, visual,
auditivo, comportamental e cognitivo. As células gliais estdo intimamente implicadas
nos mecanismos que medeiam tais disturbios, e podem atuar protegendo ou
danificando o SNC, dependendo do contexto. Além disso, nenhum tratamento
farmacolégico mostrou-se eficaz contra intoxicagdo mercurial até entao, e a literatura
ja mostrou que tanto o exercicio fisico quanto a atividade fisica sdo capazes de
modular aspectos gliais envolvidos na fisiopatologia comum entre diversas condigdes
neurologicas e intoxicagdo por metilmercurio. Assim, uma abordagem potencialmente
terapéutica e nao-farmacolégica, como exercicio fisico — e até mesmo a atividade
fisica — seria conveniente para populagdes vulnerabilizadas que se encontram
econdmica, social e geograficamente em desvantagem, como as populagdes
ribeirinhas amazdnicas que estao cronicamente expostas ao metilmercurio através da
ingestao de peixes contaminados. Este trabalho tem por objetivo verificar se o perfil
de atividade fisica pode influenciar a sintomatologia da intoxicagdo mercurial em
ribeirinhos da regido do lago de Tucurui. Entrevistas foram realizadas para obter um
perfil de atividade fisica e sintomas neurolégicos autodeclarados, e mercurio total foi
mensurado a partir de amostras de cabelo. Nossos resultados apontam para uma
possivel e complexa relagdo entre os niveis de mercurio capilar e a pratica de
atividade fisica, sugerindo que a pratica de exercicios fisicos pode ser uma alternativa

viavel a ser inserida no cotidiano.

Palavras-chave: Amazobnia; ribeirinhos; metilmercurio; MeHg; neurotoxicidade;

sintomas neuroldgicos; exercicio fisico; Tucurui.



ABSTRACT

Mercury is a highly toxic metal and is among the three substances with the greatest
potential threat to human health. Its organic form, methylmercury, is particularly
dangerous to human health due to its ability to easily cross biological barriers. The
brain is a critical target for methylmercury, where it can cause neurological disorders,
including motor, visual, auditory, behavioral, and cognitive deficits. Glial cells are
closely involved in the mechanisms mediating such disorders and can either protect or
damage the central nervous system (CNS), depending on the context. Moreover, no
pharmacological treatment has proven effective against mercury intoxication to date,
and literature has shown that both physical exercise and physical activity are capable
of modulating glial aspects involved in the pathophysiology common to various
neurological conditions and methylmercury intoxication. Thus, a potentially therapeutic
and non-pharmacological approach, such as physical exercise — and even physical
activity — would be particularly suitable for vulnerable populations who are
economically, socially, and geographically disadvantaged, such as the riverine
communities of the Amazon, who are chronically exposed to methylmercury through
the consumption of contaminated fish. This study aims to assess whether physical
activity profiles can influence the symptomatology of methylmercury intoxication in
riverside residents of the Tucurui Lake region. Interviews were conducted to obtain a
profile of physical activity and self-reported neurological symptoms, and total mercury
was measured from hair samples. Our results point to a possible and complex
relationship between hair mercury levels and physical activity, suggesting that physical

exercise may be a viable alternative to be included in daily life.

Keywords: Amazoénia; riverine communities; methylmercury; MeHg; neurotoxicity;

neurological symptoms; physical exercise; Tucurui.
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1. VISAO INTEGRADORA DO PROBLEMA

O mercurio é um metal toxico que afeta o ambiente e a saude
humana no mundo inteiro. Dentre as diversas formas de mercurio,
metilmercurio € a mais toxica, afetando diversos tecidos e 6rgaos,
principalmente o cérebro (Crespo-Lopez et al., 2021). Embora a
intoxicagdo mercurial seja um problema global, populagdes de algumas
regides apresentam um risco maior, por concentrarem atividades
humanas intimamente envolvidas no manuseio desse metal (Basu et al.,
2018). Dentre elas, as principais atividades relacionadas a emisséo de
mercurio para o ambiente incluem a queima de combustiveis, o
desmatamento, mineragao artesanal e de pequena escala, manuseio
improprio de materiais contendo mercurio e atividades industriais

(Crespo-Lopez et al., 2022).

Na Amazoénia, por exemplo, onde a atividade de mineragao é
intensa, uma alta prevaléncia de intoxicagdo mercurial ja foi relatada na
literatura. Os sintomas relacionados a tal intoxicagao incluem dores de
cabeca, perda de peso, fadiga, fraqueza muscular, tremores das méaos
e palpebras, perda parcial da funcao visual e auditiva, e até problemas
cognitivos como perda de memoria e disturbios de aprendizagem

(Santos-Sacramento et al., 2021).

Os sintomas neurolégicos relacionados a intoxicagdo mercurial
tém sido vastamente atribuidos a disfungdes neuronais (Crespo-Lopez
et al., 2009; Ajsuvakova et al., 2020). Entretanto neurbnios sao apenas
a metade da populacao celular cerebral. A outra parte € composta por
células gliais, com a microglia e os astrécitos tendo um papel expressivo
no contexto da intoxicagcdo mercurial. De fato, essas células estao
envolvidas em uma gama de fungdes no cérebro, como manutencgao da
homeostase e defesa, e estdo implicadas em variados mecanismos de
neurotoxicidade mercurial (Crespo-Lopez et al., 2022). Essas células
respondem, essencialmente, tamponando o mercurio para torna-lo
excretavel pelo organismo, modulando o status imunolégico para
restaurar alteragdes deletérias, controlando o sistema redox cerebral e

liberando fatores de crescimento, protegendo assim os neurdnios e as
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demais células do SNC dos efeitos neurotéxicos do mercurio que, por
fim, previnem eventos neuropatolégicos (Ni et al., 2012; Augusto-
Oliveira et al., 2019; Augusto-Oliveira et al., 2020). Por outro lado,
quando a exposi¢cao mercurial € intensa e sustentada, as respostas de
defesa glial podem ficar saturadas e assumir fungcbes deletérias (seja
por perder as fungbes de defesa ou ganhar fungdes anormais),

contribuindo assim para o dano (Crespo-Lopez et al., 2022).

Desafortunadamente, até hoje, ndo ha terapia farmacoldgica
efetiva para a intoxicagdo por metilmercurio, e a aplicagcdo de
determinados farmacos, como os quelantes, podem até elicitar efeitos
deletérios (Risher and Amler, 2005; Kosnett, 2013). Este cenario é ainda
mais preocupante considerando o contexto amazénico, no qual as
populagdes se encontram geograficamente isoladas, desprovidas de
fornecimento regular de energia elétrica, agua potavel e assisténcia
meédica de qualidade, e estdo cronicamente expostas ao metilmercurio
no ambiente — principalmente através da ingestdo diaria de peixes
contaminados (Arrifano et al., 2018a; Arrifano et al., 2018b; Machado et
al.,, 2021). Ante o exposto acima, apostamos em uma abordagem
terapéutica ndo-farmacoldgica, de baixo custo e acessivel que tem se
mostrado promissora em prevenir e/ou mitigar prejuizos cognitivos
induzidos por inumeras condigdes, quer sejam fisiolégicas como
envelhecimento, quer sejam patolégicas como lesdo cerebral traumatica

e doenca de Alzheimer: a atividade fisica.

De fato, uma robusta literatura tem demonstrado que a atividade
fisica planejada e estruturada, com finalidade de melhorar ou manter um
ou mais componentes da aptidao fisica, também chamada de exercicio
fisico (Dasso, 2019), tem potencial para melhorar déficits cognitivos
induzidos patologicamente através da modulagdo da reatividade glial
relacionada a neuroinflamacao sustentada, producdo e excregao de
hormdnios de crescimento, fatores de crescimento, expressao de
fatores neuroprotetores e alteracdo do volume de regibes cerebrais
chave (Larson et al., 2006; Hamer and Chida, 2009; Erickson et al.,
2014; Colonna and Wang, 2016; Augusto-Oliveira and Verkhratsky,
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2021). Os efeitos benéficos do exercicio fisico podem ser observados
tanto na abordagem experimental quanto na clinica, e em todas as
faixas etarias. No entanto, o protocolo de exercicio adotado — como
tempo de inicio, duracdo, intensidade e frequéncia — deve ser levado
em consideragao, pois os efeitos benéficos inerentes a eles sao sempre
dependentes do contexto, incluindo idade, género, espécie, regiao
cerebral afetada, background genético, condicdo patologica pre-

existente (Augusto-Oliveira et al., 2023).

Considerando que o exercicio € capaz de modular positivamente
0s mesmos mecanismos fisiopatoldgicos gliais afetados pela
intoxicacdo mercurial e que este pode representar uma alternativa
terapéutica de baixo custo e de facil acesso, é coerente sugerir, com a
devida cautela, que a adog¢ao de protocolos de exercicio fisico
direcionados ou a adocado de um estilo de vida fisicamente ativo pode
prevenir sintomas neuroldgicos induzidos por intoxicagdo mercurial em
populagdes vulnerabilizadas como as indigenas, quilombolas e
ribeirinhas que residem na Amazénia. E extremamente urgente tracar
estratégias de mitigagdo para populagdes expostas ao mercurio na

Amazdbnia, considerando o contexto em que estao inseridas.

Assim, este trabalho foi esta dividido em trés capitulos, tendo dois
deles sido publicado como artigo cientifico em periédicos internacionais.
O primeiro se trata de uma revisdo abrangente da literatura cobrindo o
papel de células neurais chave no contexto da intoxicagdo por
metilmercurio — as células gliais. Estudos investigando esse
organometal sdo extremamente relevantes haja vista que o
metilmercurio € um dos principais poluentes liberados no ambiente
amazobnico com potencial deletério para a saude de individuos
pertencentes as comunidades residindo tanto em areas mais proximas
de seu manuseio quanto mais afastadas. Considerando que ndo ha
tratamento eficaz para os efeitos gerados pela intoxicagdo por
metilmercurio, a atividade/exercicio fisico surge com uma abordagem
terapéutica potencialmente promissora em mitigar tais efeitos. O

segundo capitulo traz também uma revisdo abrangente da literatura,
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reunindo e discutindo criticamente achados que destacam o potencial
do exercicio fisico em melhorar a cognigdo através da modulagédo da
neurogénese, neuroinflamacdo e remodelamento estrutural mediados
por células gliais em contextos tanto fisiolégicos quanto patoldgicos.
Mesmo que ainda nao tenha sido investigado se a atividade fisica ou
exercicio fisico sdo capazes de influenciar os sintomas clinicos da
intoxicagdo mercurial, apostamos nessa abordagem porque,
possivelmente, exercicio fisico e a toxicidade do metilmercurio tém os
mesmos alvos celulares e moleculares. Assim, nosso terceiro capitulo
baseia-se na premissa de que a atividade/exercicio fisico é
potencialmente capaz de mitigar os sintomas clinicos elicitados pela
intoxicagdo mercurial em ribeirinhos da Amazbnia expostos

cronicamente ao metal.
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2. ARTIGO I: NEUROTOXICIDADE DO MERCURIO: O PAPEL DAS CELULAS GLIAIS
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Mercury is a highly toxic metal widely used in human activities worldwide, therefore considered a global public
health problem. Many cases of mercury intoxication have occurred in history and rep a huge chall
nowadays. Of particular importance is its methylated form, methylmercury (Melg). This mercurial species in-
duces damage to several organs in the human body, especially to the central nervous system. Neurological
impairments such as executive, memory, motor and visual deficits are associated with MeHg neurotoxicity.
Molecular mechanisms involved in MeHg-induced neurotoxicity include excitotoxicity due to glutamatergic
imbalance, disturbance in calcium homeostasis and oxidative balance, failure in synaptic support, and inflam-
matory response. Although neurons are largely affected by MeHg intoxication, they only represent half of the
brain cells. Glial cells represent roughly 50 % of the brain cells and are key elements in the functioning of the
central nervous system. Particularly, astrocytes and microglia are deeply involved in MeHg-induced neurotox-
icity, resulting in distinct neurological outcomes depending on the context. In this review, we discuss the main
findings on astroglial and microglial involvement as mediators of neuroprotective and neurotoxic responses to
MeHg intoxication. The literature shows that these responses depend on chemical and morphophysiological
features, thus, we present some insights for future investigations, considering the particularities of the context,
including time and dose of exposure, brain region, and species of study.
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1. Introduction

Mercury is a highly toxic metal found in all ecosystems and widely
distributed through natural and anthropogenic processes (WHO, 2021).
Emissions of this metal by human activities represent a toxicological risk
for both environment and human health (UNEP, 2013; Ha et al., 2017;
Crespo-Lopez et al., 2021).

According to the United Nations, in 2015, East and Southeast Asia,
South America and Sub-Saharan Africa led the emissions of mercury into
the atmosphere from fuel burning, industrial sectors, product use, and
artisanal and small-scale gold mining (ASGM) (UNEP, 2019). Together,
these regions account for 73 % of global mercury emissions into the air
(UNEP, 2019). Plumes of thousands of kilometers in size have been
detected over these regions, and both Africa and South America present
elevated dry and wet deposition of mercury (UNEP, 2019).

Mercury is currently third among the chemical substances of greatest
concern to public health (ATSDR, 2022). Worryingly, people worldwide
are exposed to mercury at some level, which may vary within and be-
tween different countries and regions (Basu et al., 2018). A recent sys-
tematic review and meta-analysis found the highest estimated blood
mercury in 2015 in South America and the lowest in Europe (Sharma
et al., 2019). However, it is important to stress that some populations,
especially gold miners and traditional populations living in highly
contaminated areas such as the Amazon region, are at increased risk of
mercury exposure, mainly due to the massive growing of ASGM activ-
ities and through contaminated fish intake (Basu et al., 2018, Crespo-
Lopez et al., 2022a,b). Recent systematic reviews confirmed that human
exposure to this metal in South America, especially in the Amazonian
traditional communities, are among the highest levels in the world (Basu
et al., 2018; Sharma et al., 2019). Furthermore, among populational
groups, indigenous people present more than six times the median blood
mercury of the general population, being even higher than that found in
ASGM or dental workers (Basu et al., 2018). In the Amazon, traditional
populations (indigenous, riverine and African-descendants) present a
close contact with the surrounding environment, being more sensible to
any environmental alterations. These traditional populations consume
around 10 meals per week containing 160-430 g of fish each (Hacon
etal., 2020). The most recent data on piscivorous fish sold in Amazonian
markets for human consumption have demonstrated a mercury mean of
0.603 pg/g (Basta et al., 2023), meaning that only 200 g of fish could be
enough (0.603 pg/g x 200 g = 120.6 pg of mercury) to exceed the
provisional tolerable weekly intake of methylmercury (MeHg), 100 pg,
recommended by the World Health Organization (WHO) (WHO, 2017).
Of note, the genetic makeup of some populations may increase suscep-
tibility to mercury intoxication and the deleterious effects associated
with mercury exposure (Arrifano et al.,, 2018; Crespo-Lopez et al.,
2023b). Worryingly, mercury emissions into the air from anthropogenic
sources have recently increased (Steenhuisen and Wilson, 2019; UNEP,
2019), and anthropogenic actions in the Amazon over the last years are
likely mobilizing mercury worldwide and increasing its bioavailability
to humans (Crespo-Lopez et al., 2023a).

The organic specie of mercury, MeHg, is the most toxic compound of
this metal (UNEP, 2019). It easily penetrates the food chains, where it
undergoes processes of bioaccumulation and biomagnification (WHO,
2021). Indeed, compared to inorganic mercury, MeHg exert stronger
cytotoxic effects, triggering apoptotic cascade in neurons even in low-
level exposure (Lohren et al., 2015). Considering this distinct toxicity,
speciation analysis seems to be a critical step to investigate mercurial
intoxication (Krupp et al., 2016).

MeHg is the most experimentally investigated species, especially due
to its ability to cross biological barriers including the blood-placental
barrier and the blood-brain barrier (BBB), making it the most toxic
mercury species for humans (Crespo-Lopez et al., 2021, 2022a,b).
Attention should be given to the dose in experimental research, aiming
to mimic actual contexts of human intoxication and ensure translational
relevance (Crespo-Lopez et al., 2022a,b).
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Most of the MeHg ingested is absorbed in the gastrointestinal tract,
metabolized in the liver, and excreted mainly in the bile and feces
(WHO, 2008; Crespo-Lopez et al., 2022a,b). Excretion through the hair
represents 10 %, but this matrix is widely used to monitor individual
MeHg levels due to its strong correlation with brain mercury levels,
besides providing a history of the individual exposure (WHO, 2008;
Branco et al., 2021; Crespo-Lopez et al., 2021). Through the blood-
stream, MeHg is distributed to all organs of the body (Crespo-Lopez
et al., 2022a,b), with the central nervous system (CNS) as the main
target, where it can cause severe disturbances (Arrifano et al., 2021).
Due to the high affinity for cysteine sulfhydryl groups, MeHg is able to
form a molecular complex similar to methionine, mimicking it, and
easily crossing the BBB, preferentially accumulating in glial cells,
especially astrocytes and microglia (Ni et al., 2012; Ajsuvakova et al.,
2020; Arrifano et al., 2021).

The main neurological symptoms of MeHg poisoning include atten-
tion and memory deficits, motor, visual and verbal impairments (Santos-
Sacramento et al., 2021), which are manifested even at low-levels
exposure (Karagas et al., 2012; Prpic¢ et al., 2017; Loan et al., 2023).
Associating these mechanism and pathological changes with exact
mercury concentrations is a tricking issue due to the numerous
confusing factors involving mercury intoxication (age, genetic back-
ground, gender, and time of exposure, among others). However, as a
possible approach, we recently discussed and proposed (Crespo-Lopez
et al., 2022a,b) mercury doses of translational relevance for in vivo
models, based on reference and critical doses for humans already
established by the WHO and the U.S. Environmental Protection Agency
(USEPA). For instance, the LOAEL/Benchmark doses' of MeHg weekly
consumption in humans according to WHO and USEPA are 35 and 7.7
pg/kg, respectively, which would be approximately equivalent to
215.83 and 47.48 pg/kg in rats (Crespo-Lopez et al., 2022a,b).
Furthermore, reference doses (i.e., maximum weekly intake) recom-
mended by both organizations are 1.6 pg/kg and 0.7 pg/kg, respectively,
which may be equivalent to 9.87 and 4.32 pg/kg in rats (Crespo-Lopez
et al., 2022a,b). Although these animal equivalent doses are not precise
measurements, they represent means for achieving more predictive and
reliable comparisons between human exposure and in vivo models
(Crespo-Lopez et al., 2022a,b).

At the cellular and molecular level, such symptoms result from the
diverse toxic mechanisms such as disturbances in oxidative balance —
either reducing the antioxidant defense or increasing the production of
reactive species (Farina and Aschner, 2017; Crespo-Lépez et al., 2019;
Arrifano et al., 2021), disturbance in glutamate and y-aminobutyric acid
(GABA) signaling (Ayensu et al., 2009, Farina et al., 2011, T. Yang et al.,
2020), disturbance in calcium homeostasis (Colon-Rodriguez et al.,
2020) and mitochondrial activity (Shao et al., 2019).

Glial cells, such as astrocytes and microglia, considered key elements
for the CNS homeostasis and defense, are closely related to functions
mentioned above (Ni et al., 2012; Arrifano et al., 2021; Crespo-Lopez
et al., 2022a,b), performing crucial roles in MeHg-induced neurotoxic
events. Noteworthy, the involvement of glial cells in MeHg intoxication
was last reviewed in 2012 (Ni et al., 2012), and much has been learned
since then. For example, although astrocytes and microglia share many
common features, they differ concerning cellular function and on their
role in MeHg-mediated toxicity (Fig. 1), resulting in distinct neurolog-
ical outcomes depending on the context (Table 1) (Arrifano et al., 2021,
Crespo-Lopez et al., 2022a,b). Oligodendrocytes represent a numerous
and important glial cells group, however, literature covering their

! Estimated critical doses (Benchmark dose or low observed adverse effect
level, LOAEL) are those causing detectable adverse effects related to neuro-
logical alterations; reference doses are those corresponding to the provisional
tolerable weekly intake recommended by each organization, i.e., the maximum
weekly MeHg consumption without apparent adverse effects. For more details,
see Crespo-Lopez et al. (2022a,b).
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involvement in MeHg intoxication is rather sparse [for recent review
please see Crespo-Lopez et al., 2022a,b]. Here we focus on astrocytes
and microglia as key modulators in MeHg intoxication.

2. Methylmercury neurotoxicity: a neurocentric view

Neurons, the best-known and most extensively studied neural
cellular component, are severely affected by mercury intoxication
(Crespo-Lopez et al., 2009). MeHg, the most neurotoxic mercurial spe-
cies, damages neuronal cytoskeleton, reducing neurite outgrowth and
cell viability (Ferraro et al., 2009; Pierozan et al., 2017). Binding to free
sulfhydryl groups present at both ends and on the surface of microtu-
bules, MeHg impairs the assembly and stability, ultimately causing cell

Science of the Total Environment 920 (2024) 170939

death and tissue disturbance (Vogel et al., 1985; Ajsuvakova et al.,
2020). Indeed, microtubules are important components of the stability
of the eukaryotic organic cytoskeleton and, along with actin and inter-
mediate filaments, mediate the transport of organelles, vesicles, neurite
growth, proliferation and cell migration and division (Rolls et al., 2021).
Interestingly, using human neuronal culture (H9 cell line), it was found
that MeHg intoxication leads to microRNAs deregulation, disrupting
critical pathways related to neuronal differentiation including axon
guidance and neurotrophin-regulated signaling (Pallocca et al., 2014).

In addition to affecting cell structure and viability, MeHg interferes
with dopaminergic (Ke et al., 2020), GABAergic (Basu et al., 2010) and
glutamatergic (Judrez et al., 2002; Farina et al., 2003) synaptic trans-
missions. Particularly considering the latter, the most investigated
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Fig. 1. Glial involvement in MeHg-mediated toxicity. Mechanisms underlying neuroprotection performed by both astrocytes and microglia involve the regulation of
antioxidant enzymes and metal storage. Astrocytes promote neuroprotection by the release of cytokines, chemokines, growth factors, and glutamate balance.
Microglia contribute to neuroprotection through cytokines (including astrocytes-mediated cytokines) and metalloenzymes. Damage mediated by astrocytes and
microglia includes loss of their functions or gain of abnormal functions, such as inhibition of antioxidant enzymes and increased formation of reactive oxygen species.
Mechanisms underlying astrocyte-induced damage include neurotransmitter imbalance and release of growth factor. Microglia contribute to damage through cy-
tokines and cytokine-activated enzymes. IL-6, interleukin 6; IL-10, interleukin 10; IL-1p, interleukin 1-p; CCL-2, chemokine (CC motif) ligand 2; TNF-a, tumor ne-
crosis factor-o; iNOS, inducible nitric oxide synthase; NGF, nerve growth factor; BDNF, brain-derived neurotrophic factor; VEGF, vascular endothelial growth factor;
Nrf-2, erythroid nuclear factor linked to factor 2; GSH, glutathione; ROS, reactive oxygen species; Glu, glutamate; Asp, aspartate; MeHg, methylmercury. Created

with BioRender.
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Table 1
Glial involvement in MeHg-induced neurotoxicity.

Glial involvement in MeHg-induced neurotoxicity

Model

Brain region Exposure via

Mellg
treatment
dose

Time of
treatment

Main results

Reference

Primary astrocytic culture
from newborn (1-day-old)
Sprague-Dawley rats

Primary astrocytic culture
from newborn
Sprague-Dawley rats

Mutant CHO K1 cell line
(DdB7)

Primary astrocytic culture
from newborn
Sprague-Dawley rats
Wistar rats

Co-culture of human neuronal
cell line (SH SY5Y) and
astrocytic-like cell line
(D384).

Primary mono- and co-culture
of astrocytes and neurons
from (1 and 7-day-old) mice.

Primary mono- and co-culture
of astrocytes and neurons
from fetal (17- to 18-day-old)
and newborn (1-day-old)
Sprague-Dawley rats.

Cerebral cortices In vitro

Cerebral In vitro

hemispheres

- In vitro

Cerebral In vitro

hemispheres

Frontal, central, Oral
and occipital

brain regions,

and cerebellum

- In vitro

Cortex and In vitro

cerebellum

Cerebral cortices  In vitro

1,5and 10
M

0to5 x
10~™

0,5 and 10
M

0to5 x
10-M

20 ppm

1to 2.5 M

5, 10, 25 and
50 pM

1 and 10 pM

land6 h

30 min

6h

30 min

1 to 4 weeks

24t048 h

24h

6h

Treatment with MeHg (5 and 10
uM) for 1 or 6 h caused an increase
in the levels of markers of oxidative
damage and concentration-
dependent reduction in the inner
mitochondrial membrane
potential. Furthermore, it
decreased mRNA expression
coding for glutamine transporters
(SNAT3/SN1 and ASCT2) at the
highest concentration (10 pM). It
suggests that exposure to MeHg
induces increased mitochondrial
membrane permeability,
alterations in glutamine/glutamate
cycling, increased ROS formation,
and consequent oxidative injury.
Reduced uptake of L-glutamate and
p-aspartate at MeHg concentrations
as low as 10 ® M. Dose- and time-
dependent increase in the efflux of
both excitatory amino acids after
MeHg exposure.

Exposure to MeHg distinctly affects
the predominantly astrocytic
glutamate transporters, GLAST and
GLT-1. For example, increased
expression of GLT-1 mRNA (but not
GLAST) after 6 h of treatment (5 or
10 uM Melg); Increased levels of
GLAST transporter proteins (5 or
10uM MeHg); and low levels of
GLT-1 transporter proteins (5 pM
MeHg); and inhibits glutamate
uptake by GLAST, while increasing
GLT-1 activity by 5 or 10 pM
MeHg.

MeHg (10~™™ inhibited the initial
rate of uptake (1 min) of the Na+-
dependent L-glutamate.

Subacute MeHg intoxication (up to
4 weeks) induced cerebellar
damage confirmed by
extravasation of endogenous IgG
and decreased expression of RECA-
1. Furthermore, it induced BBB
damage by up-regulating astrocytic
VEGF in the cerebellum and
occipital lobe.

Mitochondrial dysfunction was
significantly mitigated in neurons
co-cultured in the presence of
astrocytes at concentrations from
1.75 to 2.5 pM.

MeHg did less damage to the
mitochondrial and cell membrane
integrity of cerebellar astrocytes
compared to cortical astrocytes.
Furthermore, in co-cultures of
neurons and cerebellar astrocytes
exposed to a low dose of MeHg,
neurons showed fewer alterations
compared to the respective cell
type in monoculture. This suggests
that astrocytes may protect
neurons against MeHg toxicity.
MeHg (10 pM) altered the
concentration of amino a(:ids
(serine, glycine, and alanine) in
astrocytes and cortical neurons.
Glutamate concentration

Yin et al.,
2007

Aschner
etal., 1993

Mutkus
et al., 2005

Aschner
et al., 1990

Takahashi
et al., 2017

De Simone
et al., 2017

Morken
et al., 2005

Yin et al.,
2009

(continued on next page)
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Table 1 (continued)
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Glial involvement in MeHg-induced neurotoxicity

Glial cell

Model Brain region

Exposure via

MeHg
treatment
dose

Time of
treatment

Main results Reference

Astrocytes
and
microglia

Primary astrocytic culture Cerebral cortices
from newborn (1-to 2-day-

old) Wister rats

Cerebral
hemispheres

Primary astrocytic culture
from newborn (1-day-old) rats

Primary astrocytic culture Cerebral cortices
from newborn (1-day-old)

Sprague-Dawley rats

Primary astrocytic culture Cerebral cortices
from newborn (1-to 2-day-

old) Wistar rats

ICR mice Inferior

colliculus

Primary astrocytic culture Cerebral cortices

from newborn Wistar rats

Human astrocytoma cell line -
(1321N1)

Adult Wistar rats Visual cortex

Primary culture of astrocytes Cerebral cortices
and microglia isolated from
newborn (1-day-old) Sprague-

Dawley rats

Primary culture of astrocytes Cerebral cortices
and microglia isolated from
newborn Wistar rats or

C57BL/6 mice.

In vitro

In vitro

In vitro

In vitro

Oral

In vitro

In vitro

Oral gavage

In vitro

In vitro

10 uM

0.01,0.1,1,5
and 10 pM

+10 pM

3 and 10 yM

4 mg/kg/day

0.1,1and 3
pM

10 M

0.04 mg/kg/
day

0.1,1and5
M

0.01, 0.1, 1,
and 3 pM

6h

6h

30 min

24 h

1 to 8 weeks

1, 2, 6 and
12h

0,3,6,12,
and 24 h

60 days

>6h

0,3and 24 h

decreased only in neurons at the
same MeHg concentration. The
decrease in neurons was fully
reversed when these cells were co
cultured with astrocytes.

MeHg (10 pM for 6 h) activates 38
transcription factors and Nfr-2 (an
antioxidant response element,
which has been reported to act on
MeHg detoxification.

MeHg activated Nif2 and its
downstream antioxidant system in
neonatal rat primary astrocytes.
Nrf2 function is regulated by PI3
kinase. Furthermore, inhibition of
the PI3 kinase resulted in
decreased cellular glutathione and
increased cell death to high-dose
MeHg (5 pM).

Adequate intracellular GSH levels
and selective antioxidants promote
protective effects against MeHg-
induced oxidative stress in primary
astrocyte cultures.

Conditioned medium of MeHg-
treated astrocytes (MCM)
attenuated neuronal cell death
induced by MeHg. Furthermore,
BDNF and NGF homodimers as well
as an increase in the expression of
these factors were detected in
astrocyte culture.

MeHg induced motor
incoordination within 6 weeks of
exposure. Furthermore, Astrocytes
exposed to MeHg increased the
expression of BDNF in the inferior
colliculus (IC), suggesting that
astrocytic brain-derived
neurotrophic factor is a potent
protectant in the IC.

MeHg stimulates the release of
astrocytic ATP that auto-stimulates
P2Y1 receptors to regulate IL-6 (via
P38 MAP kinase), thus protecting
neurons against MeHg.

MeHg induced CCL-2 expression in
human astrocytes by activating the
transcription factor NF-kB.
Chronic MeHg intoxication (low
dose) induced reactive state in
astrocytes (cell body hypertrophy
and swelling and shortening and
thickening of cell dendrites).
Besides, the decreased levels of
NADPH-d neuropil labeling.

Both astrocytes and microglia store
intracellular MeHg, form ROS by
GSH depletion, and can trigger
antioxidant defense by activating
Nfr-2. However, Microglia store
more MeHg, have a lower basal
level of GSH, and form more ROS,
besides initiating antioxidative
defense in a shorter time and dose
of treatment with MeHg compared
to astrocytes.

Low concentration of MeHg (0.1
pM) stimulates exocytosis of
microglial ATP (via p38 MAPK-
and vesicular nucleotide
transporter-dependent

Takemoto
et al., 2016

Wang et al.,
2009

Shanker
et al., 2005

Takemoto

et al., 2015

Ishihara
et al., 2019

Noguchi
et al,, 2013

Kim et al.,
2012

Freire et al.,
2020

Ni et al.,
2011

Shinozaki
et al., 2014

(continued on next page)
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Table 1 (continued)
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Glial involvement in MeHg-induced neurotoxicity

Glial cell

Model

Brain region

Exposure via

MeHg
treatment
dose

Time of
treatment

Main results

Reference

Microglia

Neoplastic mono- and co-
cultures of astrocyte and
microglia from newborn rats

Sprague Dawley rats (7-
weeks-old)

Adult monkeys (Macaca
fascicularis)

Primary microglial culture
from newborn (0- and 1-day-
old) and organotypic slice
culture from posnatal (5- and
7-day-old) G57BL/6J Wild
type mice.

Microglial cell line (BV-2) and
primary microglial culture
from newborn (2-day-old)
C57BL/6 mice.

Microglial cell line (N9)

Microglial cell line (BV-2)

Dorsal root
nerves and spinal
cord

Cortex of the
calcarine sulcus
and occipital
pole

Cerebral cortices

Cerebral cortex
and cerebellum

In vitro

Oral

Oral

In vitro/in situ
(organotypic slice
culture)

In vivo
(subcutaneou)/in
vitro

In vitro

In vitro

10710 10
-6M

1 mg/kg/day

50 pM/kg/
day

0.1 iM

25 mg/kg (in

vivo)/0, 5, 10
and 20 pM (in
vitro)

2 ng/mL and
2 pg/mL

0.01, 0.1, 1
and 10 pM

5and 10
days

0,1,2,3,
and 4 weeks

6,12 and 18
months

24 and 96 h/
3 weeks (in
situ)

7 days (in
vivo)/0, 1, 2,
4and 6 h (in
vitro)

3, 6,12, 24
and 48 h

1h

mechanisms) which stimulates
P2Y1 astrocystic receptors to
regulate IL-6 and protect neurons
against low concentrations of
MeHg.

Exposure to MeHg induces
microglia reactive state.
Furthermore, interaction between
reactive microglia and astrocyte (as
evidenced by aggregate formation)
may increase local IL-6 levels and
promote neuroprotection.
Treatment with fasudil induced a
protective microglial state
(evidenced by a decrease in the
expression of TNF-«, iNOS, IL-6
and IL-1B, and an increase in the
expression of arginase-1 and IL-10)
capable of recovering axonal
degeneration and neural
dysfunction induced by chronic
exposure to MeHg.

Chronic exposure to non-toxic
doses of MeHg induced microglial
reactivity in the brain of monkeys.

Chronic exposure to MeHg induced
a neurotoxic microglial state, as
evidenced by reduced process
motility, retraction of hypertrophic
processes and cell bodies, as well as
increases in iNOS and TNF-a levels.
Rho-kinase (ROCK) was found to
be key for controlling microglial
reactivity and neurotoxicity.
Furthermore, MeHg-induced
neuronal damage was increased in
the presence of ROCK mediated
neurotoxic microglia.
MeHg-induced mitochondrial ROS
formation promoted TNF-a
expression in primary microglia
and microglia lineage BV-2 and
neuronal cell death via ASK1
activation and p38 MAPK
phosphorylation.

Low dose of MeHg-HSA (2 ng/mL)
induced cell proliferation, high
levels of nitric oxide (NO) and
intracellular Ca2+, besides to
suppressing the release of
inflammatory mediators such as
TNF-« and IL-18, without cytotoxic
effects; while higher doses (2 pg/
mL) of MeHg-HSA induced an
increase in the release of TNF-a and
1L-18, promoting cell death and
cytotoxic effects on N9 cells.
Furthermore, ERK/MAPKs and
STATS3 signaling pathways are
related to MeHg-HSA hormesis in
N9 cells.

MeHg (10 pM) induced necrotic-
like cell death and suppression of
IL 6, TNF o, iNOS
immunoreactivity, and release of
NO, besides decreasing the
metabolic activity of BV-2 cells.

Eskes et al.,

2002

Fujimura
et al., 2019

Charleston
etal., 1994

Shinozaki
et al., 2019

Toyama
et al., 2021

Tan et al.,
2019a

Martins
et al., 2022
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signaling pathway and a critical target of MeHg-induced neurotoxicity
[for a review see Aschner et al., 2007], MeHg inhibits glutamate uptake
and stimulates its release into the synaptic cleft, increasing extracellular
levels of this neurotransmitter leading to excitotoxicity (Farina et al.,
2013). This enhanced extracellular glutamate concentration exacerbates
any previous excitotoxic event by overactivation of the N-methyl-p-
aspartate receptors (NMDAR) and GluA2-subunit-lacking a-amino-3-
hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPAR), which
increases calcium influx into neuron (Pivovarova and Andrews, 2010;
Sceniak et al., 2020). MeHg also affects neuronal function by blocking
sodium and calcium channels, disrupting synapse transmission and
neuronal excitability as observed in CA1 area of rat hippocampus
(Gutiérrez et al., 2018). Interestingly, although disruption of calcium
signaling and glutamate dyshomeostasis may contribute separately to
MeHg toxicity, they are inter-related events (Farina et al., 2013; T. Yang
et al., 2020).

In addition to affecting calcium and glutamate signaling, MeHg can
induce neuroinflammation by releasing neuronal inflammatory media-
tors. Increased levels of “pro-inflammatory™ cytokines such as inter-
leukin 1-p (IL-1p), interleukin 6 (IL-6), tumor necrosis factor-o (TNF-x)
and interferon-gamma (IFN-y), and decreased levels of the “anti-in-
flammatory” cytokine interleukin 10 (IL-10), as well as increased levels
of caspase-1, caspase-3 and caspase-8 (which are involved in cell death)
were detected in vitro after MeHg exposure (Algarve et al., 2019).

Indeed, MeHg can induce neuronal cell death through both apoptotic
and necrotic pathways, depending on the intensity of the insult. For
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example, in the primary culture of cerebellar granule cells, exposure to
5-10 pM of MeHg for 1 hour induced necrotic cell death, while exposure
to lower concentrations such as 0.5 to 1 pM of MeHg for 18 hour induced
apoptotic cell death (Castoldi et al., 2000). Further, in primary cultures
of cortical neurons from neonatal rats exposed prenatally to 4 mg/kg of
MeHg (through the mother), MeHg induced cell death by apoptosis,
while at a higher dose (8 mg/Kg) MeHg induced cell death by both
apoptosis and necrosis (Ferraro et al., 2009). The mechanisms by which
MeHg activates necrotic pathways in neuronal cells are still uncertain,
however, in addition to intensity of the insult, they depend on the cell
type, cellular defense mechanisms (Ferraro et al., 2009, L. Yang et al.,
2020).

Furthermore, prenatal MeHg exposure may increase neuronal dif-
ferentiation of fetal radial glial precursor through CREB phosphoryla-
tion, besides increasing cortical neurogenesis and interfering in
neuronal trajectories during cell migration (Loan et al., 2023). These
MeHg-induced neuronal alterations led to impaired communication,
reduced sociability, and increased restrictive and repetitive behaviors in
young adult rats (Loan et al., 2023). Considering adult neurogenesis,
MeHg seems to affect numerous molecular mechanisms in neural stem
cells including apoptosis, mitochondrial dysfunction, and cell cycle
progression, with potential effects on cognitive function (Faustman
et al., 2002; Raposo et al., 2020; Abbott and Nigussie, 2021).

MeHg intoxication affects neurons significantly, including distur-
bances in neuronal structure and function, neurotransmitter imbalance,
inflammatory mediators, and even cell death, which lead to major
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Fig. 2. Diagram of complex biochemical pathways involved in the neuroprotective and deleterious roles of glial cells in MeHg neurotoxicity. Created with BioRender.
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effects such as altered cognition and behavior (Sokolowski et al., 2013;
Tian et al., 2016; Wu et al., 2016; Shinoda et al., 2019; T. Yang et al.,
2020). However, neurons only constitute half of the brain cells. The
remaining 50 % is comprised of glial cells, which play a crucial role in
the functioning of the CNS (Augusto-Oliveira et al., 2020; Verkhratsky
etal., 2021; Arrifano et al., 2022; Augusto-Oliveira et al., 2022). Among
the glial cells, astrocytes and microglia are particularly implicated in the
MeHg-induced neurotoxicity, acting as protective or aggravating agents
of the toxic effects of MeHg (Fig. 2) (Arrifano et al., 2021; Crespo-Lopez
et al., 2022a,b).

3. Astrocytes and methylmercury
3.1. Astroglial physiopathology

Astrocytes comprise the main glial cells responsible for CNS ho-
meostasis (Kriegstein and Alvarez-Buylla, 2009; Augusto-Oliveira et al.,
2020; Verkhratsky et al., 2020). As electrically silent cells, they respond
to the extracellular environment through a diversity of receptors that
elicit fluctuations of cytosolic ions tightly organized in space and time
(Semyanov et al., 2020; Verkhratsky et al., 2020; Arrifano et al., 2021).
Thus, these cells are involved in several events such as water and po-
tassium transport, maintenance of the BBB, oxidative balance, neuro-
transmitter uptake and metabolism and release of inflammatory
mediators, ultimately modulating synapse plasticity, cognition and an-
imal behavior (Augusto-Oliveira et al., 2020; Verkhratsky et al., 2020;
Arrifano et al., 2021). This functional diversity is closely related to its
molecular and morphological diversity (Augusto-Oliveira et al., 2020).

Astrocytes are widely diverse cells, exhibiting differential tran-
scriptional and proteomic profiles that are brain region-, time- and
species-dependent (Chai et al., 2017; John Lin et al., 2017; Morel et al.,
2017). Of note, this distinct gene expression is closely related to astro-
glial functions (Chai et al., 2017), and it has been used to identify
astroglial subpopulations (Batiuk et al., 2020). In fact, the comparison
between astroglial mRNAs from different brain regions suggests that the
gene expression is different between regions (Doyle et al., 2008; Bayr-
aktar et al., 2020)., Consequently, the coding pattern of proteins as
neuropeptides, glycoproteins, Na+ and K+ channels, glutamate and
GABA receptors, glutamate and glycine transporters, and also chemical
reactions as synthesis of nitric oxide and GABA are different either
(Zhang and Barres, 2010). In the cerebellum, astrocytic gene expression
is modulated by the adjacent mature neurons, suggesting that the
astrocyte-neuron communication would have an important role in the
molecular diversity of astrocytes (Farmer et al., 2016). Cortical astro-
cytes, for example, exhibit molecular patterns which are specific to each
layer of the cortex, and according to the different astrocyte-neuron in-
teractions in each layer (Lanjakornsiripan et al., 2018).

Morphologically, astrocytes are extremely complex cells with high
diversity in both soma and branch; numerous processes, ranging from
short and thick to long and thin branches, compose an intricate arbor-
ization that covers part of the synapses held by neurons and blood
vessels, in addition to maintaining contact with other glial cells (Zhou
et al.,, 2019; Augusto-Oliveira et al., 2020; Arrifano et al., 2022).
Expression of specific markers characterizes this diversity in astrocytic
morphology, including the expression of glial fibrillary acidic protein
(GFAP), calcium-binding protein p (§1008), glutamine synthetase (GS),
and excitatory amino acid transporters (EAATs), among others
(Augusto-Oliveira et al., 2020; Escartin et al., 2021). The GFAP, the
oldest and most used marker (Eng et al., 1971; Hol and Pekny, 2015), is
expressed at different levels in astrocytes depending on cellular matu-
ration and brain region, and under both physiological and pathological
conditions (Savchenko et al., 2000; Augusto-Oliveira et al., 2020). For
example, white matter astrocytes express higher GFAP levels than gray
matter astrocytes (Cahoy et al, 2008). Additionally, expression of
astroglial markers may be modulated by pathological and lifestyle
contexts, as the case for GFAP (Sofroniew, 2020).

Science of the Total Environment 920 (2024) 170939

Astrocytes under pathological conditions perform roles contributing
to both deleterious and benefic outcomes in several pathological con-
texts, either i) preserving the nervous tissue and essential functions of
the CNS including maintenance of the antioxidant system, neurotrans-
mitters balance and regulation of BBB permeability or; ii) losing their
functions and/or gaining abnormal functions, thus contributing to
neuronal damage and pathological disorders including neurodegenera-
tive diseases (Escartin et al., 2021) and neurotoxicity induced by xe-
nobiotics such as MeHg (Farina et al., 2011; Malfa et al., 2014; Arrifano
et al., 2021, 2022).

3.2. Astrocytes in MeHg intoxication

Most of the scientific literature investigating astroglial involvement
in mercury neurotoxicity focuses on MeHg effects, the most toxic species
of mercury for the CNS. Astrocytes present high affinity for MeHg,
accumulating it inside the cell (Ni et al., 2011). The presence of neutral
L-type amino acid transporter system (LAT1) in its cell membrane con-
tributes to the intracellular storage of MeHg through the MeHg-L-
cysteine conjugate, which is structurally similar to the endogenous
substrate of LAT1, L-methionine (Simmons-Willis et al., 2002; Yin et al.,
2008).

Within astrocytes, MeHg interacts with reduced glutathione (GSH),
forming an excretable complex, which decreases GSH levels and in-
creases reactive oxygen species (ROS) production, leading to oxidative
stress (Fig. 2) (Farina et al., 2011). Of note, MeHg can raise ROS levels,
mediated by alterations in several MAP kinase-related signaling path-
ways including ERK1/2, p38MAPK and SAPK/JNK (Sasaki et al., 2023).
GSH is the main antioxidant defense, neutralizing ROS and xenobiotic
molecules (Ni et al., 2011), and promoting the maintenance of the
intracellular redox state (Shanker and Aschner, 2001). In addition to the
direct interaction, MeHg interferes with GSH synthesis by inhibiting the
uptake of its precursors (cystine and cysteine) in astrocytes; considering
that astrocytes play an important role in supplying GSH precursors to
neurons, the antioxidant defense of neurons is compromised by reducing
GSH levels and making neurons more susceptible to MeHg intoxication
(Shanker and Aschner, 2001; Allen et al., 2002).

MeHg also interferes with one of the fundamental astrocytic roles in
the CNS homeostasis: the metabolism and uptake of neurotransmitters
from the synaptic cleft (Farina et al., 2011; Mahmoud et al., 2019).
Astrocytes are the main responsible for removing extracellular neuro-
transmitters from the synaptic space, using two types of transporters:
Na-+-dependent and Na-+-independent membrane transporters (Lehre
and Danbolt, 1998; Anderson and Swanson, 2000; Mahmoud et al.,
2019). The Na+-dependent transporter captures most of the synaptic
cleft neurotransmitters (Rose et al., 2018). In addition to uptake less
quantity of neurotransmitters, the Na+-independent transporter cap-
tures cystine, which is a crucial substrate for the antioxidant response
(Anderson and Swanson, 2000).

In the event of MeHg exposure, the metal inhibits EAATS, increasing
the concentration of extracellular glutamate that hyper stimulates
neuronal receptors causing excitotoxicity (Fig. 2) (Aschner et al., 1993;
Yinetal., 2007). This decreased astroglial uptake of glutamate by MeHg
compromises astroglial GSH content, also contributing to neurotoxicity
(Mutkus et al., 2005; Augusto-Oliveira et al., 2020; Arrifano et al.,
2021). Furthermore, MeHg intoxication can stimulate the efflux of
excitatory amino acids, glutamate and aspartate, mediated by astrocytic
swelling (Aschner et al., 1990; Mullaney et al., 1994), aggravating
neuronal damage by excitotoxicity (Aschner et al., 1993).

Additionally, astrocytes express vascular endothelial growth factor
(VEGF), a potent regulatory factor in vascular growth and development
(Nesic et al., 2010; Hirooka et al., 2013). Increased expression of VEGF
can amplify permeability in systemic vessels and even in the BBB,
leading to hypersensitivity, leakage, and edema (Fig. 2) (Ferrara et al.,
2003; Takahashi and Shimohata, 2019). Recently, it was observed that
MeHg may induce VEGF overexpression in astrocytes, in which two
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alternative pathways may be involved: (i) regulation of hypoxia-
inducible factor la-mediated by MeHg-induced ROS; or (ii) MeHg-
induced aquaporin 4 water channels inhibition (Takahashi et al., 2017).

Although not yet investigated, part of the MeHg-induced neurotox-
icity may be associated with a possible disturbance in calcium signaling
in astrocytes, as observed in motor neurons; MeHg-mediated increase in
intracellular calcium concentration has been reported in motor neurons
both from human pluripotent stem cells, through AMPAR (Colon-
Rodriguez et al., 2020), and from the spinal cord of mice, through
NMDAR and voltage-gated calcium channels (Ramanathan and Atch-
ison, 2011). Calcium plays a fundamental role in cellular functions
(Berridge et al., 2003), but the excess in the cytoplasm can activate cell
death pathways (Berridge et al., 2000). It is not yet known whether
MeHg intoxication disturbs calcium homeostasis in astrocytes, so this
discussion opens an interesting window for further investigation.

Other studies have found neuroprotective roles of astrocytes against
MeHg (Arrifano et al.,, 2021). For example, neurons co-cultured with
astrocytes show higher resistance to MeHg when compared to isolated
cultures (of neurons or astrocytes) (Morken et al., 2005; De Simone
et al., 2017). A similar study, using primary cultures of rat cerebral
cortices, suggests that astrocytes can attenuate MeHg-induced gluta-
matergic imbalance in neurons (Yin et al., 2009).

A possible mechanism underlying the neuroprotective role of astro-
cytes in MeHg intoxication is the astrocytic expression of erythroid
nuclear factor linked to factor 2 (Nfr-2) in response to MeHg-induced
oxidative stress (Fig. 2) (Ni et al., 2011). Once activated, Nfr-2 is
translocated to the nucleus and upregulates a series of antioxidant
proteins promoting neuroprotection (Toyama et al., 2007; Wang et al.,
2009; Takemoto et al., 2016). Inhibition of Nfr-2 or its abnormal
expression can aggravate MeHg intoxication, leading to cell death
(Toyama et al., 2007; Ni et al., 2011). Activation of Nfr-2 increases the
GSH synthesis and protects neurons and astrocytes against MeHg-
induced oxidative stress, consequently protecting brain tissue and
function (Shanker et al., 2005; Ni et al., 2011).

Astrocytes also synthesize and release neurotrophins such as nerve
growth factor (NGF) and brain-derived neurotrophic factor (BDNF)
(Schwartz and Nishiyama, 1994). By binding to tropomyosin kinase
(Trk) receptors A and B, respectively, these neurotrophins induce
autophosphorylation of the intracellular tyrosine kinase domain, acti-
vating a signaling pathway for cell survival and neuronal protection
(Fig. 2) (Takemoto et al., 2015; Odaira et al., 2019). Indeed, the upre-
gulation of BDNF and NGF prevents neuronal cell death induced by
excitotoxicity (Lin et al., 1996; Almeida et al., 2005). Recently, it was
reported that the MeHg-induced NGF and BDNF release in astrocytes
would attenuate neuronal cell death (Takemoto et al., 2015), protecting
the auditory system (Ishihara et al., 2019), which suggests a protective
role for astrocytes against MeHg-induced neurotoxicity.

Besides trophic factors, astrocytes release inflammatory factors such
as cytokines and chemokines (Choi et al., 2014; Chen et al., 2015), that
may mediate protective mechanisms against MeHg-induced neuronal
damage. For example, IL-6 released by astrocytes in response to ATP
released by astrocytes or microglia stimulates neuronal adenosine 1
receptors, which are autoreceptors, inhibit synaptic signaling and,
consequently, neuronal hyperstimulation (Fig. 2) (Noguchi et al., 2013;
Shinozaki et al., 2014). Curiously, the release of astrocytic IL-6 mediated
by microglial ATP may lead to an earlier and more sensitive neuro-
protective response to lower concentrations of MeHg (Shinozaki et al.,
2014), suggesting that the interaction between astrocytes and microglia
may trigger a better adapted response to MeHg intoxication. Besides IL-
6, MeHg induces chemokine (CC motif) ligand 2 (CCL2) overexpression
in astrocytes through activation of the transcription nuclear factor-
kappa B (NF-kB) (Fig. 2) (Kim et al., 2012), which can trigger an in-
flammatory response against MeHg neurotoxicity. Blocking CCL2
signaling by inhibiting C—C chemokine receptor type 2 (CCR2) in-
creases neuronal cell death in MeHg intoxication (Godefroy et al., 2012).

Despite these findings, further studies are needed on the mechanisms
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and components involved in astrocyte-mediated inflammatory re-
sponses towards MeHg-induced damage. Perhaps the interactions be-
tween astrocytes represent just one of several adaptive strategies of the
CNS against neurotoxicity promoted by toxic metals.

4. Microglia and methylmercury
4.1. Microglial physiopathology

Microglia are the most responsive immune cells in the CNS,
responding quickly to disturbances in the nervous environment
(Augusto-Oliveira et al., 2019). They derive from primitive macro-
phages that migrate to the neural tube early in embryonic development
before BBB formation (Ginhoux et al., 2010; Stremmel et al., 2018). In
adulthood, microglia seem to promote self-renewal through a finely
tuned region- and age-dependent balance between proliferation and
apoptosis without additional recruitment of cells from the circulating
monocytes (Askew et al., 2017). The density of microglial cells is
approximately 7 % of total non-neuronal cells and it remains relatively
similar among mammalian species (including rodents, carnivores,
marsupials, and primates) and different brain structures, although such
density may vary between cortical white and gray matter (Dos Santos
et al., 2020).

Microglia are involved in several events such as inflammation,
stroke, neurodegenerative diseases, brain homeostasis and cognitive
processes, ultimately influencing animal behavior (Augusto-Oliveira
et al., 2019; Augusto-Oliveira et al., 2022). Such extensive participation
in both physiological and pathological processes in the nervous system
reflects the great diversity of receptors that these cells express in their
membranes, including receptors for neuromodulators, receptors for
neurotransmitters and immunoreceptors (Garaschuk and Verkhratsky,
2019). The wide range of microglial receptors allows these cells to be
highly sensitive to the brain environment and to orchestrate an appro-
priate response to any homeostatic disturbance (Colonna and Butovsky,
2017; Verkhratsky et al., 2021). For instance, by detecting a harmful
stimulus, microglia can release chemical mediators that signal the
recruitment and proliferation of new microglial cells, as well as
phagocytosis of pathogens, injured cells, and/or cellular debris (Tha-
meem Dheen et al., 2007; Shinozaki et al., 2019).

Microglia have idiosyncratic and highly varied morphology in both
physiological and pathological contexts (Augusto-Oliveira et al., 2022).
In the healthy brain, the predominant microglial state is the surveilling
microglia, characterized by a small cell body and elongated, branched
and mobile processes that constantly monitor the nervous environment,
scanning the extracellular space and checking the functioning of adja-
cent cells, ready to respond to the smallest disturbances (Augusto-Oli-
veira et al.,, 2022). By detecting disturbances in CNS homeostasis,
microglia undergo a shift from surveillance to a reactive state, in which
they may present a less complex morphology, characterized by short-
ening and thickening of the processes and a wider cell body (Sierra et al.,
2016). The morphology of this reactive microglia may also vary ac-
cording to the type, intensity, and region of the disease or injury, in
which their morphologies are associated with distinct gene expression
profiles (Paolicelli et al., 2022).

The transcriptional profile of human microglia is quite heteroge-
neous compared to that of other species, although many primate species
retain a central gene program typical of microglia (Geirsdottir et al.,
2019). The combined analysis of single-cell techniques (RNA sequencing
and mass cytometry) revealed that the microglial transcriptional profile
is brain region-, age-, disease-dependent (Sankowski et al., 2019, Y.L.
Tan et al., 2019, Augusto-Oliveira et al., 2022). In the healthy CNS,
molecular profile of microglia is based on a region-dependent spectrum
of expression of microglia-specific genes such as ionized calcium-
binding adapter molecule 1 (Iba-1), purinergic receptor P2YR12,
transmembrane protein 119 (TMEM119) and colony-stimulating factor
receptor (CSF1R) (Sankowski et al., 2019). In the pathological CNS, the
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microglial molecular profile is based on a context-dependent spectrum
of microglial genes expression including, but not limited to, TREM2,
APOE, CD11c¢, CD68, CD86, CD45, CX3CR, CD16 and CD32 (Bottcher
et al., 2018; Hoshi et al., 2019; Paolicelli et al., 2022).

4.2. Microglia in MeHg intoxication

It is well established that microglia are involved in mercury toxicity
(Garg and Chang, 2006; Sakamoto et al., 2008) and, similar to astro-
cytes, microglia tend to accumulate intracellular MeHg which, when
depleted of GSH, may generate oxidative stress and consequently cell
death (Fig. 2) (Ni et al., 2011). Recently, it was discovered that, as as-
trocytes, microglia also express LAT1 in their membrane, which allows
them to capture and accumulate MeHg (Huttunen et al., 2019). Another
aspect similar to astrocytes is that microglia express antioxidant genes
such as hemeoxygenase-1 (Ho-1), cysteine/glutamate transporter (xCT),
and quinone oxidoreductase-1 (Nqo-1) that encode detoxifying proteins
from Nrf-2 activation (Ni et al., 2011; Jimenez-Blasco et al., 2015). Even
non-toxic doses of MeHg can elicit reactivity in both microglia
(Charleston et al., 1994; Lapham et al., 1995) and astrocytes (Freire
et al., 2020).

Despite the similarities, microglia respond more quickly to MeHg
than astrocytes. For example, in vitro microglial Nrf-2 upregulation
occurs 1 min after MeHg exposure and Nrf-2 nuclear translocation is
detected after 10 min of treatment, whereas, in astrocytes, the Nrf-2
upregulation takes 6 h of exposure to be evident, in addition to
requiring higher MeHg concentration (Ni et al., 2011). The early
microglial response to MeHg may be related to its greater ability to store
MeHg, generate more ROS, and lower basal GSH level compared to as-
trocytes (Ni et al., 2011).

In addition, microglia may interact with astrocyte and promote a
joint response to MeHg. In 3-D cultures of brain cells treated with MeHg,
reactive microglia-astrocytes interaction increases local IL-6 release,
triggering astrocytic reactions which may protect neurons against MeHg
toxicity (Eskes et al., 2002). Interleukin-6 neuroprotection has been
previously reported in hippocampal neurons against cell death induced
by glutamatergic excitotoxicity (Yamada and Hatanaka, 1994). Also, the
release of other cytokines such as arginase-1 and IL-10 by microglia has
already been reported to promote the restoration of MeHg-induced
axonal degeneration (Fig. 2) (Fujimura et al., 2019).

Chemokines release may also be involved in the microglial response
to MeHg. The chemokines CCL3 and CCL4, also known as macrophage
inflammatory proteins 1a and 1p, respectively (Gamo et al., 2008), are
synthesized and released in the CNS by glia (Simpson et al., 1998) and
target the CCR1 and CCR5 chemokine receptors (Ren et al., 2010). In the
MeHg-exposed mouse brain, the expression of CCL3 and CCL4 genes is
upregulated, which can mediate MeHg-induced CNS damage (Kim et al.,
2013). Some transcription factors activated by lipopolysaccharides
(LPS) and hydrogen peroxide, such as NF-kB, are involved in the CCL4
expression, while other transcription factors are also playing their role in
this process (Takahashi et al., 2018). It is presumable that the CCL4
expression is induced by MeHg because of the activation of those other
transcription factors, as a cell protective response to MeHg exposure,
decreasing neuronal damage. Further studies are necessary to better
understand the role of microglial chemokines in MeHg intoxication.

Microglial response via inflammatory mediators such as TNF-a, in-
terleukins, and chemokines can promote repair of injured tissue or
exacerbate the injury depending on the context (Kettenmann et al.,
2011; Augusto-Oliveira et al., 2019; Verkhratsky et al., 2021). For
instance, the MeHg-induced reactive microglia state may lead to neu-
rodegeneration and neuronal damage through the microglial release of
inflammatory mediators via Rho-kinase (ROCK) signaling (Fig. 2) (Shi-
nozaki et al., 2019). Different pathways may be involved in ROCK
activation in microglia, such as MeHg-mediated caspase-3 activation or
arachidonic acid release with downstream prostaglandin induced by
MeHg (Shinozaki et al., 2019). Blockade of ROCK signaling by inhibitors
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(Y-27632 and Fasudil) restores axonal degeneration and prevent
neuronal cell death by inducing a “protective” microglial phenotype
characterized by decreased TNF-«, inducible nitric oxide synthase
(iNOS), IL-1p, and IL-6 expression and increased arginase-1 activity and
IL-10 expression (Fujimura et al., 2019). Furthermore, through the
ASK1/p38MAPK signaling pathway, MeHg-induced mitochondrial ROS
formation might promote microglial TNF-« release and, consequently,
neuronal cell death (Toyama et al., 2021).

Interestingly, the dose and duration of exposure modulate the out-
comes of microglial reactivity in MeHg intoxication (Shinozaki et al.,
2014, 2019). Low MeHg concentration (2 ng/mL) conjugated to human
serum albumin (MeHg-HSA) promotes cell proliferation, high levels of
nitric oxide (NO) and intracellular calcium in N9 microglia cell line,
besides to suppressing the inflammatory mediators (TNF-a and IL-1p,
among others) release, preventing cytotoxicity; otherwise, higher dose
(2 pg/mL) of MeHg-HSA increases the TNF-a and IL-1p release from N9
microglia, causing cell death (Q. Tan et al., 2019). Further, in microglial
BV-2 cell line, acute treatment with high MeHg concentration (10 pM)
induces necrotic-like cell death and suppression of IL-6 and TNF-u
(Martins et al., 2022). However, low MeHg concentration treatment
(100 nM), for 24 h, stimulates a neuroprotective microglial state (Shi-
nozaki et al., 2014). Interestingly, the chronic exposure to the same
MeHg dose induces neurotoxic microglial state (Shinozaki et al., 2019).
Indeed, acute exposure to high doses and chronic exposure to relatively
low doses can lead to microglial inflammatory response, motivating
distinct microglial inflammatory responses, which in turn, can either
prevent or mitigate damage to neurons or aggravate previous patho-
logical events and cause harmful effects on neurons (Thameem Dheen
et al., 2007; Toyama et al., 2021; Martins et al., 2022).

The role of microglial cytokines and chemokines in MeHg-induced
toxicity is hardly understood and the literature has shown different re-
sults in under different conditions (Table 1). Several aspects such as the
animal/in vitro model, duration of exposure, and dose may interfere
with the outcome of the microglial response to MeHg intoxication, being
imperative that these features must be selected according to their
translational meaning (Crespo-Lopez et al., 2022a,b).

5. Conclusion

In this review, we discuss the involvement of two glial types, astro-
cytes and microglia, in MeHg-induced neurotoxicity and highlight the
similarities and differences between the protective and deleterious roles
played by these cells. It is evident the massive involvement of astrocytes
and microglia in pathophysiological responses to MeHg intoxication,
although the exact microglial and astrocytic components and mecha-
nisms driving the diversity of glial responses to MeHg neurotoxicity are
just beginning to be understood. Noteworthy, particularities such as
context, time and dose of exposure, brain region, and species seem to
drive the way of glial cells response to MeHg intoxication. Finally,
further investigations on glial involvement in MeHg intoxication to
decipher such particularities can pave the way to better understand how
MeHg affects the CNS and to develop new mitigating therapies to MeHg-
induced neurotoxicity.
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Abstract

Physical exercise is well known as a non-pharmacological and holistic therapy believed to prevent and mitigate numerous
neurological conditions and alleviate ageing-related cognitive decline. To do so, exercise affects the central nervous system
(CNS) at different levels. It changes brain physiology and structure, promoting cognitive improvements, which ultimately
improves quality of life. Most of these effects are mediated by neurotrophins release, enhanced adult hippocampal neurogen-
esis, attenuation of neuroinflammation, modulation of cerebral blood flow, and structural reorganisation, besides to promote
social interaction with beneficial cognitive outcomes. In this review, we discuss, based on experimental and human research,
how exercise impacts the brain structure and function and how these changes contribute to cognitive improvements. Under-
standing the mechanisms by which exercise affects the brain is essential to understand the brain plasticity following exercise,
guiding therapeutic approaches to improve the quality of life, especially in obesity, ageing, neurodegenerative disorders,
and following traumatic brain injury.

Keywords Physical activity - Memory - Neuroinflammation - Alzheimer’s disease - Adult neurogenesis - Brain volume -
Cerebral blood flow

Introduction

Exercise, different from physical activity (any bodily move-
ment produced by skeletal muscles), is a planned and struc-
tured physical activity purposefully focused on improvement
or maintenance of physical fitness, which is a set of attrib-
utes either health- or skill-related [1]. Exercise impacts the
whole body and affects the central nervous system in many
ways (Fig. 1); it increases the heart rate thus pumping more
oxygen to the brain, and induces hormonal, growth factor
and inflammatory mediators release, besides brain structural
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changes; all these effects reflect neuroplasticity, which is
intimately associated with cognitive improvements. Cogni-
tion is widely defined as a set of mental processes involved
in acquiring knowledge and handle it through perceiving,
recognising, understanding, and reasoning, which eventually
leads to changes in behaviour.

Animal studies mainly provide information about exer-
cise-induced cellular and molecular changes, which are
associated with cognitive functions (Fig. 2). These changes
include synaptogenesis [2], angiogenesis [3], adult neuro-
genesis [4], and inflammatory response [5], which are asso-
ciated with cognitive performance as assessed by numerous
behavioural tasks. In human studies, exercise effects on CNS
and cognition are mainly associated with brain structural
changes (i.e. volume) and modulation in serum growth
factors [6]. However, it is important to consider that some
exercise protocol details such as duration and intensity have
contradictory effects on CNS. Also, the exact molecular
signalling pathways underlying this modulation promoted
by exercise have not yet been defined, as well as how this
might impact brain function and neurodegenerative diseases
prevention and treatment.
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Fig. 1 Effects of exercise on
brain cellular, molecular, and
structure. Exercise is believed
to positively impact the brain,
being recommended as an
adjuvant polytherapy for several
neurological conditions both for
preventing and mitigating them.
As a potent stimulus, exercise
modulates brain functions
through molecular, cellular, and
structural changes ultimately
affecting cognition. Created
with Biorender

We shall start our narrative by analysing how exercise
affects brain physiology due to the cellular and molecular
changes (influencing adult neurogenesis and inflammatory
status) and alterations of cerebral blood flow, associated
with improved cognitive processes (Table 1). Additionally,
we discuss how exercise affects structural reorganisation of
different brain areas and the association between this struc-
tural reorganisation and cognitive performance in humans.
Finally, we briefly ponder on how future studies could cir-
cumvent potential pitfalls that could bias the conclusions,
making it difficult both accurate interpretation and replica-
tion of results.

Exercise-Induced Cellular and Molecular
Changes Influencing Cognitive Performance

Exercise Modulates Adult Hippocampal
Neurogenesis and Cognition

Among the most challenging cellular changes induced by
exercise, adult neurogenesis arises as an important event
with therapeutic applications associated with cognitive
improvements. As we shall see bellow, exercise-induced

@ Springer

adult neurogenesis is controlled by a series of growth fac-
tors, including brain-derived neurotrophic factor (BDNF),
insulin-like growth factor-1 (IGF-1), and vascular endothe-
lial growth factor (VEGF), and is positively associated with
several aspects of cognition including diftferent types of
memory, learning, and executive functions.

Adult neurogenesis occurs in all species investigated so
far, from fishes to mammals, with some debate considering
its extent and function in humans [32]. Neurogenesis in the
adult brain is strongly associated with cognitive improve-
ments specially learning and memory processes [33]. The
generation, survival, and integration of new neurons into
pre-stablished circuits are complex events which depend on
favourable environment and are profoundly influenced by
exercise.

Initially, it was shown that enriched environment, with all
its inherent aspects such as social interaction, learning tasks,
inanimate stimuli, and exercise, induced adult neurogenesis
[34]. Later, by separating elements from enriched environ-
ment, it was possible to demonstrate that voluntary exercise
alone is sufficient to increase cell proliferation and survival
of new neurons in the dentate gyrus (DG) of mice [35]. To
assess rather accurately the influence of exercise on adult
neurogenesis, mice were housed in four groups in cages with
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Fig.2 Exercise-induced molecular, cellular, and cognitive changes in
experimental models. Exercise induces increase or decrease of several
molecules involved in cognitive functions according to experimental
models. In ageing, exercise improves cognition through increased
neurogenesis, IL-18 and decreased IL-1p. In AD models, exercise
induces a reduction of AP plaques, Tau dysfunction, mitochon-
drial dysfunction, IL-1p, and TNF-«, besides to increase neurogen-
esis improving cognition. Following TBI, early exercise (performed
in early stage after lesion) reduces BDNF, CREB, and Synapsin-1,

the same size: control, running (standard cage plus running
wheel), and enriched environment with and without run-
ning wheels. Only groups with exercise available displayed
increased cell proliferation, neuron survival, and neurotro-
phin levels, thus suggesting exercise as an essential mediator
of BDNF levels and adult hippocampal neurogenesis [36].
Either controlled or voluntary exercise in running wheels
enhances both adult hippocampal neurogenesis and memory
process [37]. By increasing adult neurogenesis and reorgan-
ising new neurons in pre-existing neural circuitry, exercise
impacts cognitive processes such as improvements in con-
textual, spatial, and temporal information [38]. In ageing
mice, improved cognition such as spatial learning following
voluntary exercise (running wheels for 21, 35, and 49 days)
occurs due to DG connectivity, particularly DG-Cornu
Ammonis 3 and the DG-medial entorhinal cortex connec-
tions in the dorsal hippocampus, which is dependent on neu-
rogenesis [8]. Short-term running wheel exercise (running
wheels for 5 days) can reorganise circuits of 1-week old

and Cognition in TBI

contributing to cognitive deficits. On the other hand, prior (per-
formed before de lesion) or late (beginning late after lesion) exercise
increases the expression of these molecules, besides to reduce neu-
ronal loss and lesion volume, contributing to cognitive improvements.
In obesity models, exercise reduces IL-1p, TNF-a, and cyclooxyge-
nase-2, contributing to cognitive improvements. Finally, exercise
seems to positively impact adult neurogenesis through several mol-
ecules including VEGF, BDNF, IGF-1, IL-6, and Synapsin-1, which
is associated with improved cognition. Created with Biorender

adult neurons, influencing their numbers, morphology, and
excitatory synaptic inputs [39]. More recently, it was found
that these morpho-functional changes in newborn gran-
ule neurons are long-term and result in enhanced synaptic
plasticity [40]. Also, chronic exercise (running wheels for
3—4 weeks) accelerates 3 weeks old neuron development in
aged mice, impacting neuron born at the onset, during and
in the end of exercise period [41].

These important effects of exercise in the adult neuro-
genesis seem to be mainly mediated by neurotrophic fac-
tors including BDNF, IGF-1, and VEGF [42], which are
increased by exercise in both rodents and humans and
associated with the improvements in cognitive processes
including faster reaction time, better attention, learning, and
memory [43, 44]

BDNF is primarily synthesised during the exercise
through PGC-1a/FNDCS5 pathway [45]; it is essential to
hippocampal exercise-mediated neurogenesis, synapse
plasticity, and cognitive improvements by regulating critical
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Table 1 (continued)

Reference

Cognitive find-

ings

Molecular and

Cognitive tests

Physical activity =~ Duration

Physical activity

tests

Mean age

Specie N

Brain area

cellular findings

Obesity-induced neuroinflammation and cognition

[30]

Passive avoidance It cancelled the Improved work-

Controlled 8 weeks

Treadmill run-

20 weeks

10

Hippocampus and Sprague Dawley

ing memory

increase in
TNF-a and

exercise

ning

rats

cerebral cortex

IL-1f and

cyclooxyge-

nase-2 levels

induced by the
high-fat diet.

It upregulated
Bcl-2 expres-
sion and

suppressed Bax

expression

[31]

Prevent working

Prevented white

Open field/

15 days

Running wheel Voluntary exer-

2—-12 months

Hippocampus and C57BL/67J (B6)

memory déficit

matter damage
and neuroin-
flammation

spontaneous
alternation/

cise

mice

cerebral cortex

novel spatial
recognition

steps such as differentiation and neuronal survival [46].
Importance of BDNF to adult neurogenesis and associ-
ated cognitive performance such as learning and memory
was demonstrated by numerous models including BDNF
knockdown [47] and ablation of the gene encoding high-
affinity receptor for BDNF (tropomyosin kinase receptor B,
TrkB) in the hippocampus [48], both models resulting in
disrupted adult neurogenesis and memory deficits. Recently,
rats exposed to moderate- and high-intensity intermittent
exercise for 4 weeks showed increased hippocampal neuro-
genesis, enhanced protein levels of hippocampal BDNF, and
improved spatial memory, suggesting that exercise-induced
neurogenesis and cognitive improvements are associated
with BDNF signalling [9]. Interestingly, pharmacological
induction of adult neurogenesis and elevated levels of BDNF
mimicked the beneficial effects of exercise in cognitive func-
tion such as spatial pattern separation and retention memory
in a mouse model of Alzheimer’s disease (AD) [10].

In a rat model of whole-brain irradiation-induced cog-
nitive impairment, running exercise (forced running for
3 weeks in a motor riven running wheel) induced both neu-
rogenesis and cognitive improvements via BDNF-mediated
pathway as quantified by open field and Morris water maze
tests [11]. Of note, despite the link between BDNF, adult
neurogenesis, and exercise in humans is not completely
understood, studies demonstrate that aerobic exercise
increases BDNF levels in diseased and normal individuals
[49, 50], and indicate that BDNF mediates exercise-induced
cognitive improvements including executive functions
assessed by task-switch paradigm [51].

Besides BDNF, IGF-1 is critical to brain plasticity and
adult neurogenesis. The main source of IGF-1 is outside
of the brain and exercise is critical to its protective and
plastic functions in the brain [52]. Circulating IGF-1 levels
are quickly increased by exercise [53], which is essen-
tial for exercise-induced adult neurogenesis and cognitive
processes. In fact, mutant mice with low levels of serum
IGF-1 showed disrupted adult hippocampal neurogenesis
and spatial memory deficits, which were not improved by
exercise [12]. Interestingly, exogenous IGF-1 administra-
tion restored neurogenesis and ameliorated cognitive defi-
cits in response to exercise [12]. One of the mechanisms
underlying IGF-1-mediated adult neurogenesis involves
the RIT1/Akt/Sox2 cascade [54]; disruption on Akt sig-
nalling impairs exercise-mediated adult neurogenesis and
synaptic plasticity [55, 56]. Additional evidence indicates
points of convergence between IGF-1 and BDNF signal-
ling related to exercise effects on hippocampal plasticity,
which could influence adult neurogenesis and cognition
[42]. For instance, in response to exercise, BDNF sig-
nalling is potentiated by IGF-1, and exercise-induced
BDNF signalling is inhibited following IGF-1 blockade,
which reduces the expression of synaptic proteins [13].
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Additionally, in cultured hippocampus, BDNF signalling
is reinforced through IGF-1-induced neuronal levels of
TrkB [57].

Furthermore, VEGF emerges as another neurotrophic
factor influenced by exercise and necessary for exercise-
induced adult hippocampal neurogenesis [58]. VEGF is an
angiogenic factor with neurogenic functions both in vitro
and in vivo, stimulating proliferation of adult hippocampal
neurons through three distinct cascades, MEK/ERK- and
P13K/Akt-dependent-, caveolin-1/VEGF, and VEGF-C/
VEGFR-3 signalling [59-61]. Thus, VEGF signalling
links hippocampal activity to neurogenesis, neuronal
plasticity, learning and memory [62, 63], and exercise
[64]. In fact, peripheral VEGF is required for hippocam-
pal response to exercise [65], and blocking it from enter-
ing the brain inhibits exercise-induced adult hippocampal
neurogenesis in mice [66]. Also, regular treadmill exercise
(30 min daily, 3 days a week for 6 weeks) increased VEGF
levels in both soleus and gastrocnemius muscles, which
was correlated with hippocampal learning assessed by
Morris water maze in rats [14]. Interestingly, in the mice
brain, mRNA and proteins levels of VEGF are increased
by exercise only in the hippocampus [67] and occur via
lactate receptor HCARI [68].

Recent pharmacological approach in experimental mod-
els provides evidence that reinforces the role of VEGF
on exercise effects. The pharmacological inhibition (oral
application of a tyrosine kinase inhibitor) of VEGF signal-
ling prevented the exercise-induced neurogenesis and vis-
ual and spatial memory improvements [69]. Similar find-
ings were found in mice after ischemic injury; treadmill
exercise (30 min/day, 5 days/week during 1 or 3 weeks)
improved neurogenesis and cognitive function such as spa-
tial learning abilities; these benefits were prevented by
administration of selective VEGF receptor 2 (VEGFR2)
inhibitor [16]. Of note, while fatiguing exercise induced
only adult neurogenesis with no spatial discrimination and
no changes in hippocampal levels of BDNF and VEGF,
moderate exercise induced adult neurogenesis, increased
levels of hippocampal BDNF and VEGF, and cognitive
improvement as assessed by radial arm maze task [70],
shedding some light on the need to investigate and normal-
ise studies considering exercise protocols aiming at better
understand the effects of exercise on cognition.

Beyond these three growth factors, exercise also
modulates adult neurogenesis and cognition through
modulation of growth hormone (GH) levels; the block-
ade of GH receptors or depletion of newborn neurons
prevented exercise-induced cognitive improvement in
aged female mice [18]. Noteworthy, these benefits of
exercise only occur for a specific duration (35 days
of exercise), with shorter (21 days) or longer periods
(45 days) proving ineffective [18].

@ Springer

Exercise Modulates Neuroinflammation
and Cognition

The inflammatory response occurring within the CNS
is mainly mediated by cytokines and chemokines that
are mostly produced by glial cells. The intensity of this
response may vary according to the context, either physi-
ological (i.e. ageing) or pathological (i.e. neurodegenera-
tion, neurotrauma, obesity), and its duration has critical
impacts on neurological outcomes [71]. Although short-term
inflammation represents an essential role for orchestrating
immune response aimed at CNS defence, sustained inflam-
matory response may contribute to tissue and cell dam-
age and numerous associated deficits including cognitive
impairments [72, 73]. Growing evidence supports exercise
as an extrinsic modulator of inflammatory mediators that
may contribute to prevent or mitigate cognitive decline in
different contexts including normal ageing, ageing-related
neurodegenerative diseases, neurotrauma, and obesity.

Exercise Modulates Neuroinflammation in Ageing

Ageing process is accompanied by a chronic low-grade
inflammatory status known as “inflammageing”, with upreg-
ulation of numerous “pro-inflammatory” mediators such as
tumour necrosis factor alpha (TNF-a), interleukin 1 beta
(IL-1p), interleukin 6 (IL-6), ciclooxigenase 2 (COX-2), and
inducible nitric oxide synthase (iNOS) to name a few [74].
The main source of these “pro-inflammatory” mediators in
the aged brain are primed microglia, which are more respon-
sive to immunological challenges and drive exaggerated neu-
roinflammatory response [75, 76]. Since cognitive ageing is
intimately associated with neuroinflammation [77], reducing
microglial reactivity is of particular importance to inhibit or
mitigate ageing-related neuroinflammation and preserving
cognitive processes.

In this context, exercise emerges as a contributor to mod-
ulate microglial reactivity inhibiting neuroinflammation by
increasing the expression of “anti-inflammatory” media-
tors and decreasing the expression of “pro-inflammatory”
mediators [78, 79]. For example, CD200, a neuronal immu-
noregulatory factor that inhibits microglial reactivity, and its
ligand, microglial CD200R [80], are both increased by exer-
cise (treadmill running) in the mouse brain [81]. In addition,
exercise induces brain expression of IL-1Ra (antagonist of
IL-1p) [82], which has higher affinity with IL-1R than IL-1p
(a key player in immune dysregulation and cognitive vulner-
ability in ageing brain, mainly released by primed microglia)
[83]. Thus, by interfering with IL-1p signalling, exercise
may contribute to modulate neuroinflammation and improve
cognition. In fact, aged rats showed reduced hippocampal
IL-1p signalling, as well as improved memory processes
following daily exercise for 12 weeks [19]. Besides the
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reduction of ageing-related increase in hippocampal IL-1§
expression (mRNA and protein), the number of senescent
microglia and restoration of microglial metabolic homeosta-
sis has been recently suggested as an alternative mechanism
for the cognitive improvement assessed by novel object rec-
ognition and object displacement tests, which is associated
with exercise in the aged brain [20].

Exercise also modulates peripheral inflammatory media-
tors, which influences neuroinflammation in elderly, thus
modulating ageing-related cognitive decline [84]. For
instance, in elderly individuals, 16 weeks of multimodal
exercise was associated with decreased peripheral “pro-
inflammatory” cytokines, increase in peripheral levels of
BDNF, and improved cognition assessed by Montreal Cog-
nitive Assessment test [85]. Interestingly, higher intensity of
exercise and lower serum TNF-a levels were associated with
greater total brain volume in older humans [86, 87], while
sedentary older people displayed smaller lateral prefrontal
cortex and hippocampus volume, and worse performance
in cognitive tests, including Clock test, Mini-Mental State
Examination test, and questionaries regarding memory, ori-
entation, and executive functions, compared to physically
active elderly [88]. In old mice, exercise-induced benefits
on cognition seem to be mediated by liver-to-brain axis
[21]. Plasma concentrations of glycosylphosphatidylinosi-
tol (GPI)-specific phospholipase D1 (Gpldl), an enzyme
derived from liver, are high following exercise, and cor-
relate with cognitive improvements. Of note, serum levels
of Gpld1 were found increased in active, healthy elderly
humans [21].

Finally, exercise seems to be determinant for successful
ageing (determined by absence of depressive symptoms,
disability, respiratory symptoms, systemic conditions such
as cancer and coronary artery disease and cognitive impair-
ment) [89], ultimately improving quality of life and well-
being in elderly individuals [90].

Exercise Modulates Neuroinflammation and Cognition
in Alzheimer’s Disease

Exercise, as previously shown, is a well stablished anti-
ageing holistic therapy inversely associated with risk for
neurodegenerative diseases [91]. In line with this view,
clinical studies have demonstrated that exercise is associated
with reduced risk for dementia and AD among people over
65 years [92] and a widely recommended powerful strategy
for preventing and combating AD [93]. Although its effects
modulating neuroinflammation in AD are widely studied
[94], the precise type, intensity, frequency, or duration of
the exercise to be protective against AD remains to be better
investigated [95]. It is important to note that neuroinflam-
mation is a central characteristic of AD [96], with critical
roles in AD brain such as in neuronal plasticity, hippocampal

neurogenesis, and brain networking connectivity, essential
for cognition [97-99]. In the AD context, exercise modu-
lates neuroinflammation through numerous pathways
including the expression of triggering receptor expressed
on myeloid cells 2 (TREM2), an immunoglobulin receptor
mainly expressed by microglia in the brain [100]. Soluble
TREM2 plays a protective role against AD, suggesting the
increase of soluble TREM2 as a potential therapy for AD
[101]. Interestingly, 16 weeks of mild to moderate exercise
(treadmill, stationary bike, cross training) was associated
with increased soluble TREM2 measured in cerebrospinal
fluid in AD patients [102].

Although animal models cannot accurately replicate
human AD, a considerable body of experimental evidence
has provided relevant information about the role of exer-
cise in AD-induced pathophysiology [94, 103, 104]. For
example, in an AD model using amyloid precursor protein
(APP)/PS1 double-transgenic mice, 12 weeks of tread-
mill exercise reduced neuroinflammation as quantified
by decreased inflammatory mediators such as TNF-a and
IL-1B, reduced amyloid beta accumulation in the hippocam-
pus, and preserved cognitive function assessed by Morris
water maze and novel object recognition tests [105]. Using
another AD mouse model (3xTg mice), treadmill exercise
for 12 weeks induced a reduction of amyloid beta plaque
burden, hyper-phosphorylated tau, neuroinflammation, and
increased cognitive performance assessed by Morris water
maze and passive avoidance tests [23]. Similar results were
found applying a shorter exercise training (4 weeks) in the
same 3xTg mice model of AD; exercise led to a reduction of
amyloid beta and hyperphosphorylated tau deposits, down-
regulation of TNF-a in the prefrontal cortex, and upregula-
tion of “anti-inflammatory” interleukin 10 (IL-10) in the
hippocampus, besides improved cognitive performance in
Y-maze and novel object recognition tests [24].

Even short-term exercise was able to reduce neuroinflam-
mation and improve cognitive functions in an AD model;
3 weeks of running wheel reduced hippocampal levels of
TNF-a and IL-1p in the Tg2576 mouse model as com-
pared to wild type mice levels, a response coincident with
improved cognition assessed by radial-arm water maze,
reference/long-term, and working short-term memory tests
[25]. In addition, the same exercise program in the same
model resulted in an altered neuroinflammatory profile
with increased mRNA levels of CXCL1 and CXCL12, mol-
ecules involved in neuroprotection against hippocampal
amyloid beta, and neuron-glia/neuron-neuron communica-
tion, respectively [26]. Furthermore, this exercise program
improved spatial memory in these transgenic animals as
compared to sedentary controls [26]. Taking these data
together, exercise is highly recommended as a beneficious
adjuvant for preventing and combating AD-associated cogni-
tive dysfunctions.
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Noteworthy, considering exercise effects on neurodegen-
erative diseases, this review focuses on AD since it is the
most common neurodegenerative disease worldwide. In fact,
about 6 million people live with AD only in the USA [106].
However, it is important to note that exercise positively
affects cognitive functions in many other neurodegenerative
diseases. In Parkinson’s disease (PD), for example, a recent
systematic review of randomised controlled trials has found
that exercise promotes significant cognitive improvements in
PD patients, including cognitive function, processing speed,
sustained attention, and mental flexibility [107]. Addition-
ally, it was found that treadmill exercise (60 min, 3 times a
week for 24 weeks) promoted the best results on cognitive
functions of PD patients [107]. In multiple sclerosis (MS),
an autoimmune and neurodegenerative disease, exercise also
seems to positively impacts cognitive functions; a recent
systematic review of randomised trials recommends that
MS patients be engaged in multimodal exercise, at least 3
times a week for best results in cognitive functions [108].
Also, they found that a worse basal MS status, or the older
the patients, the greater effect on cognitive function [108].
In other neurodegenerative diseases such as Lewis body
dementia (LBD), much less is known about how exercise
affects cognitive functions. In fact, the first trial investigating
exercise effects on cognition in individuals diagnosed with
LBD was recently published [109]. This study showed that
exercise promoted improvements in cognition and functional
independence in participants, although the authors recognise
that further studies with larger samples and high-quality tri-
als are necessary for further evaluation of exercise as poten-
tial non-pharmacological intervention [109]. Future experi-
mental and clinical studies should investigate mechanistic
aspects of exercise and potential cognitive and behavioural
improvements in neurodegenerative diseases.

Exercise Modulates Neuroinflammation and Cognition
Following Traumatic Brain Injury

Traumatic brain injury (TBI) is a non-degenerative and
non-congenital insult to the brain and is recognised as a
global public health problem, with a high incidence of neu-
rological disorders. Despite the causal relationship not being
entirely known, it has been suggested that neuroinflamma-
tory response exacerbates the TBI-induced pathophysiology
leading to physical and neurological conditions including
cognitive deficits [110].

In this scenario, microglia seem to be the main player
in TBI-associated neuroinflammation through release
of numerous inflammatory mediators, driving progres-
sive lesion expansion, loss of myelin, neurodegeneration,
and cognitive disfunction [111, 112]; microglial deletion,
1 month after TBI, to remove chronically reactive hyper-
trophic microglia and subsequent repopulation by ramified
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microglia, resulted in reduced neuroinflammation, neuro-
degeneration, and improved cognition in rats [113]. In this
scenario, exercise exerts important roles following TBI by
modulating microglial reactivity [78] and neuroinflamma-
tory status, which is a determinant for neurological out-
comes and ultimately the quality of life. Interestingly, the
timing of exercise initiation seems to be critical for some
neurological outcomes. In contrast to late intervention, it has
been long suggested that exercise intervention administered
too soon following TBI may increase brain damage and the
odds of adverse outcomes [114]. In fact, while late exer-
cise (14-20 postinjury days) induced an increase of BDNF,
cyclic adenosine monophosphate response element-binding
protein (CREB) synapsin 1 levels and recovered cognitive
function assessed by water-maze training in rats, early ini-
tiation of exercise (0—6 postinjury days) induced a decrease
of CREB and synapsin 1 levels besides impaired cognitive
performance in learning and memory tests [27].

The neuroinflammatory response following TBI, which is
initially aimed at defending the brain tissue and physiology,
is further exacerbated and to a large extent responsible for
sustaining secondary brain damage, neurodegeneration, and
cognitive deficits in the TBI prognose [115, 116]. Therefore,
preventing the secondary inflammatory phase rather than
avoiding the first phase would be at the core of the beneficial
effect of exercise in TBI. In mice, late exercise beginning at
5 weeks (not early — 1 week) after TBI reduced deficits in
working and retention memory; this cognitive improvement
was associated with modulation of inflammatory cascades
and neurogenesis [28]. Late exercise also reduced microglial
reactivity resulting in decreased levels of “pro-inflamma-
tory” TNF-«a and increased levels of “anti-inflammatory”
IL-10 [28].

Additionally, late exercise led to increased BDNF, IGF-1,
and CREB gene expression, besides increased hippocampal
neurogenesis compared to control animals [28]. In contrast
to late exercise, early exercise (1 week) increased microglial
reactivity and associated inflammatory responses, failing in
rescue cognitive outcomes as assessed by Morris water maze
and reversal Morris water maze tests [28].

Reinforcing regular active lifestyle, pre-conditioning
training seems to be efficient for preventing neuroinflam-
mation following TBI. Rats exposed to 4 weeks of running
before TBI displayed reduced neuroinflammation and were
protected against motor deficit [117]. In a shorter model of
pre-conditioning (voluntary running during 3 weeks before
TBI), exercise positively modulated neuroinflammation by
increasing mRNA expression of anti-inflammatory markers
and decreasing mRNA expression of “pro-inflammatory”
markers [118]. In addition, using a similar model of pre-
conditioning, exercise activated multiple antiapoptotic path-
ways improving synaptic plasticity and cognitive function
[29]. From a metabolic point of view, experimental data
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revealed that favourable changes in the hepatic oxidative-
inflammatory status elicited by exercise exerted prophylactic
effects on acute hyperglycaemia and cerebral inflammatory
response induced by severe TBI [119].

An important pathway by which exercise modulates neu-
roinflammation following TBI seems to be through IL-6
release. In fact, compelling evidence suggests beneficial
effects of IL-6 release following TBI [120, 121]. The release
of this interleukin is closely related to the duration of the
exercise and can reach up to fivefold the basal levels after
exercise in the human brain [122]. Brain release of 1L-6 is
usually followed by “anti-inflammatory” events such as pro-
duction of IL-1Ra and IL-10 [123], while deficiency of IL-6
is associated with increased levels of IL-1p and cognitive
dysfunction, with poor behavioural performance as assessed
by open field, rotarod and NeuroScreen tests in mice follow-
ing TBI [124]. All in all, regular exercise or late interven-
tion would be essential for both prevention and mitigation
of TBI-induced neuroinflammation and related adverse out-
comes including motor and cognitive aspects.

Exercise Modulates Obesity-Induced Neuroinflammation
and Cognition

Exercise has long been known as an efficient tool for
weight control in overweight and obese individuals, being
instrumental to prevent and treat different levels of obesity
[125-127]. Systematic reviews have revealed cognitive dys-
function in obese adults, including attention, memory, and
decision making, among others [128, 129]. The most recent
systematic review and meta-analysis reveals that exercise
improves numerous domains of cognition including work-
ing memory, cognitive flexibility, and nonverbal and spatial
ability in both obese children and adolescents [129]. These
beneficial effects can be extended to obese adults [130] and
elderly, ultimately improving quality of life [131]. Of note,
exercise also improves cognition, as assessed by several
neuropsychological tests, in obese elderly with metabolic
syndrome [132] and glucose intolerance [133], both risk fac-
tors for dementia.

Experimental evidence in rodent suggests potential mech-
anisms underlying beneficial effects of exercise on cognition
in obesity, with a central role for inflammation. Obesity has
been classically considered an inflammatory condition [134],
which has been recently linked to alterations in microbiota
[135]. Obesity-associated systemic inflammation drives
hypothalamic inflammation, which causes dysfunctional
hypothalamic outputs to other parts of the brain eventually
associated with cognitive dysfunction (Reviewed in: [136]).
In humans, obese adults showed hypothalamic damage asso-
ciated with inflammatory markers and cognitive dysfunc-
tion [137]. In mice, exercise (treadmill running) protected
the hypothalamus against high-fat-induced inflammation

by reducing microglial reactivity and improving glucose
tolerance [138], besides to improve metabolic function by
preserving hypothalamic neurons and enhancing leptin and
insulin sensitivity [139]. Insulin and leptin resistance can be
induced by obesity-induced inflammation, which may con-
tribute to cognitive dysfunction [140, 141]. By modulating
IL-6 and IL-10 “anti-inflammatory” activity, exercise may
contribute to increase hypothalamic insulin and leptin sen-
sitivity through IKKB/NF-kf signalling in rats [142]. These
hormonal alterations could represent exercise-induced neu-
roprotection, ultimately improving brain tissue and cognitive
health [143].

Regarding the obesity-associated neuroinflammation,
other areas of the brain, including the prefrontal cortex,
amygdala, and hippocampus, are also affected. In rats, obe-
sity induced by high-fat diet resulted in increased levels of
TNF-a, IL-1p, and cyclooxygenase-2 in the hippocampus,
which were revoked by treadmill exercise [30]. Moreover,
exercise (30 min/day for 5 consecutive days on a motorised
treadmill) improved working memory and ability in a pas-
sive avoidance task when compared to sedentary obese rats
[30]. Recently, it was reported that exercise prevents both
obesity-associated neuroinflammatory response and conse-
quent white matter damage associated with excessive phago-
cytosis of myelin by myeloid cells, and associated memory
deficits such as spatial working memory and novel spatial
recognition [31].

Additionally, microglia seem to actively contribute to
obesity-induced cognitive disfunction through phagocyto-
sis of synapses; partial knockdown of receptor of fractalkine
(chemokine serving as a “find me” cue for microglia) pre-
vented microglial reactivity and cognitive decline in obese
mice [144]. Considering that exercise inhibits microglial
reactivity [78, 145], exercise could contribute to prevent
obesity-induced cognitive dysfunction by modulating micro-
glial behaviour.

Exercise Modulates Cerebral Blood Flow
and Cognition

Cerebral blood flow is tightly regulated by cerebral autoreg-
ulation, and the traditional belief was that it remained stable
and largely unaffected by external stimuli such as exercise
[146, 147]. However, this view has been challenged by
studies indicating that exercise induces global and regional
increase of cerebral blood flow [148—151]. A systematic
review and meta-regression analysis reported increased
cerebral blood flow in the prefrontal cortex, a brain region
involved in executive functions, associated with moderate
and intense exercise in healthy individuals [152]. More
recently, a study in preadolescent children (7- to 9-year-
old) revealed that exercise is not associated with cerebral
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blood flow in brainstem, but it is associated with higher
hippocampal cerebral blood flow, a brain region intimately
involved in cognitive processes such learning and memory
[153]. The most compelling studies associating exercise,
increased cerebral blood flow, and cognition improvements
were performed in healthy and diseased elderly [154—158].

A study with only healthy old women (50- to 90-year-
old) has found a strong association between exercise, cer-
ebrovascular blood flow, and cognitive processes includ-
ing executive functions as measured by neuropsychological
batteries including verbal fluency, spatial reasoning, and
memory tests, suggesting that, at least partially, exercise
would be associated with beneficial effects on cognition
mediated by increased cerebral blood flow [154]. Indeed,
robust evidence from animal studies and data from stud-
ies with adult humans over 50 years indicates numerous
ways by which exercise influences cerebral vasculature
improving neuroplasticity and cognitive processes [159].
In 60- to 70-year-old apparently healthy men, 8 weeks of
aerobic exercise were associated with increased cerebral
blood flow in the prefrontal lobe, particularly the subcal-
losal and anterior cingulate gyrus, and improvements on
executive functions [156]. In healthy low-active middle-
aged and older adults (mean age 65.9 years), 6-month of
aerobic exercise was associated with increased cerebral
blood flow and improvements in verbal fluency but not in
memory [157]. Interestingly, shorter term aerobic exercise
(12 weeks) in healthy adults (57- to 75-year-old) increased
cerebral blood flow in the anterior cingulate region and in
both left and right hippocampus, associated with improved
immediate and delayed memory performance [155].

The brain is an organ with relative high-energy density
demands; the adult human brain, for example, although
accounts for only ~2% of the entire body mass, it accounts
for~20% (~49 ml O, per minute) of the total oxygen con-
sumption at rest [160]. In this scenario, reduced cerebral
blood flow may compromise neuronal function and cognitive
processes; it represents an increased risk for dementia in gen-
eral population [161], being predictive of conversion from
mild cognitive impairment (MCI) to dementia among elderly
[162]. Comparing MCI and healthy individuals, 12 weeks
of aerobic exercise (30-min sessions of moderate-intensity
treadmill walking per week) improved verbal fluency and
working memory in both groups. However, while these cog-
nitive improvements were associated with increased cerebral
blood flow in healthy individuals, in MCI individuals, verbal
fluency was associated with decreased cerebral blood flow
in the left insula and anterior cingulate cortex [163]. Note-
worthy, MCI individuals showed increased cerebral blood
flow in the left insula at baseline compared to healthy ones,
which is hypothesised to reflect a neurovascular compen-
satory response supporting compromised neural network
[164]. A subsequent study with MCI individuals (mean age
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66.4 years) showed that 12 months of aerobic exercise (25-to
30-min training, 3 times per week) increased cerebral blood
flow in the anterior cingulate cortex associated with memory
improvement measured by Wechsler Memory Scale-Revised
[158]. Potential discrepancies in the results could be due to
the different type of exercise among other factors, since cer-
ebral haemodynamic response is dependent on type of exer-
cise [165]. Overall, these data suggest that beneficial effects
of exercise on cognition are mediated by increased and
reorganisation of cerebral blood flow, and that although the
nature of vascular response may differ, exercise has potential
to improve cerebrovascular dynamics and ultimately brain
health and cognition.

Exercise-Induced Structural Changes
Associated with Cognitive Improvements
in Humans

The effects of exercise on brain structures are well-docu-
mented [1, 86, 166-168], and evidence using image tech-
niques and cognitive tests in humans suggests that exer-
cise-induced brain structural changes are associated with
cognitive improvements through lifespan (Table 2). The
importance of exercise for brain structure and function may
also be noted in sedentary people, who present reduced hip-
pocampal volume and white matter hyperintensities such as
gliosis, demyelination, and axonal loss, which are associated
with cognitive impairment [ 189-191].

Literature suggests that exercise effects on human brain and
cognition are most prominent in elderly and children [192],
although recent studies indicate that even a single session of
moderate intensity exercise is associated to hippocampal con-
nectivity and memory improvement in young adult humans
[174, 193]. Most of protocols used to assess exercise in humans
include treadmill, walking or running, and cycle ergometer,
while brain volume is assessed by magnetic resonance imag-
ing, and cognitive performance by several protocols including
memory tasks (i.e. work, spatial, episodic, relational, verbal
memory), intelligence and attention tests, processing speed, and
several executive function tasks (Table 2). Notably, the effects
of exercise are not uniform across brain regions [194], being
more consistent in areas related to memory and executive func-
tions such as hippocampus and prefrontal cortex [167].

Hippocampus represents the most investigated brain
area regarding exercise effects on CNS. For example, sev-
eral works in children, adults, and elderly have shown an
association between exercise, greater hippocampal volume,
and better cognitive performance including improved spatial,
relational, verbal, and episodic memory (Table 2). Regard-
ing prefrontal cortex, increased volume and thickness are
often associated with exercise and better executive functions,
working memory, and attentional performances (Table 2).
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Additionally, other brain areas have been investigated; exer-
cise was associated with greater volume of basal ganglia and
improved executive functions and cognitive flexibility. Also,
exercise was associated with thicker medial temporal lobe
and improved attention (Table 2).

Conclusion and Future Directions

Although there is a massive body of evidence demonstrating
that exercise is associated with improved cognition evolving
numerous mechanisms throughout life in healthy and patho-
logical contexts as previously discussed, high heterogeneity
among studies investigating these effects represents a com-
mon limitation and a potential bias in the literature.

Numerous systematic reviews and meta-analysis have
shown that heterogeneity of nature of studies may account,
at least in part, for conflicting results since relationship
between exercise and cognition depends on the cognitive
task assessed, age, gender, time of intervention, and the exer-
cise protocol performed [195-200]. In humans, for example,
a recent systematic review and meta-analysis has found, at
least in older adults, the absence of a linear relationship
between exercise and cognition, with different types of exer-
cises inducing different dose-response associations [201].
Also, the authors estimated minimal and optimal doses
for several types of exercise, indicating superior effects of
resistance exercises over other modalities [201]. Addition-
ally, the dose-response relationships between exercise and
cognition are distinct in older adults with and without cogni-
tive impairments, indicating that short and high frequency
exercise programs may elicit better cognitive results in the
former group [202]. Finally, the sample sizes should be
carefully discussed since it was recently shown that works
using dozens or few hundreds of people present statistical
underpower, resulting in inflated effect sizes and replica-
tion failures [203]. In small samples, the variability across
population accounts for replication failures; as samples sizes
increase into thousands of participants, both replication rates
and effect size inflation start to improve [203].

In this context, it is of particular importance for the field to
standardise study methods, including exercise protocols (i.e.
modality, design, intensity, and duration), intervention time
(i.e. before or after diagnosis of injury or neurodegenerative
disease), study group (i.e. age, gender, and health condition),
interference controls (including control groups, inclusion/
exclusion criteria), cognitive functions (what and how they
are assessed), and assessment time of outcome (i.e. during,
post-exercise, and how long after exercise interventions). Fur-
thermore, especially considering human studies, it is essential
to work on large samples (thousands of participants); since
there is high heterogeneity among people, a large sample is
essential for accurate conclusions and replication of results.

Careful application and normalisation of the above
research methods can allow us to answer key questions
that can drive to future directions of research, e.g. What
type of exercise/exercise protocol should be recommended
to promote cognitive improvement/recovery? When would
it be best to practice such an exercise? How often and for
how long? Which group of people would the practice of
a certain exercise benefit? Research in line with answer-
ing these questions would make it possible for people to
benefit from a personalised exercise program, according to
individual particularities or groups of people. All in all, the
complex relationship between exercise and different cogni-
tive aspects needs to be carefully assessed to allow us to
better understand how exercise can affect cognitive functions
in different contexts. This knowledge has the potential for
supporting the development of future effective and accu-
rate non-pharmacological interventions aiming cognitive
improvement/preservation, and prevention of ageing- and
disease-associated cognitive decline.
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Abstract

Mercury is a toxic metal present worldwide. South America is the
second region on mercury emissions into the environment, especially
the Amazon region, where intense gold exploration activities are
concentrated and which, combined with deforestation, biomass burning
and the construction of hydroelectric dams, draw a serious scenario of
mercury contamination in the region. In fact, recent studies have already
demonstrated, in riverine populations, the occurrence of neurological
symptoms and mercury concentrations are so high that they easily
exceed the limits established by international health agencies.
Considering that these populations are mostly isolated,
socioeconomically vulnerable and the absence of proper
pharmacological intervention against mercury intoxication in such
scenario, this work proposes investigating the potential of lifestyle-
related physical activity to mitigate or prevent both mercury accumulation
and neurological symptoms reported by individuals chronically exposed
to mercury in riverine communities. For this, individuals from
communities in the region of Lake Tucurui, Para State, were interviewed
to survey the profile of physical activity and self-reported neurological
symptoms. Further, hair samples were extracted for mercury
quantification. This study revealed high mercury exposure in an
Amazonian population, with men presenting significantly higher

concentrations. We found no correlation between general physical



activity and self-reported clinical symptoms or mercury concentrations.
However, individuals who exercised more frequently (5-7 times/week)
presented significantly lower mercury concentrations. Future
investigations with robust methodologies are crucial to elucidating these

relationships and associated health outcomes.

Introduction

Mercury contamination is a public health problem present
worldwide. South America is the second region that emits the most
mercury into the environment, mainly through artisanal mining activities,
namely artisanal and small-scale gold mining (ASGM) (UNEP, 2019). In
the Amazon region, this activity corresponds to 78.5% of the mercury
emission by ASGM in South America and 27% in the entire world (Galvis,
2020). Most of the Amazon territory is in Brazil (Legal Amazon), where
the largest and one of the oldest areas of ASGM, the Tapajos Basin
region, can be found (Berzas Nevado et al., 2010; Crespo-Lopez et al.,
2021).

Large amounts of elemental mercury vapor are emitted into the
atmosphere during the gold purification process, which consists of
heating mercury-gold amalgams (Crespo-Lopez et al., 2021). In clouds,
elemental mercury is partially transformed into inorganic mercury, which
can travel long distances and precipitate with rain, reaching vegetation,
water bodies, and sediments (Crespo-Lopez et al., 2021). Of note, the
Amazon rainforest, the largest tropical forest in the world, plays a crucial
role in the fixation and uptake of atmospheric mercury (Figueiredo et al.,
2018). Thus, deforestation harms the sequestration of atmospheric
mercury, and the increasing fires throw it back into the air. Interestingly,
biomass burning is the second largest source of mercury emission in this

region (Crespo-Lopez et al., 2021).

In addition, the building of large projects, such as dams for
Hydroelectric Power Plants, increases the dynamism of mercury in the

Amazon environment for two main reasons: (I) the creation of
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physicochemical conditions conducive to the proliferation of
methanogenic bacteria capable of biotransforming the inorganic mercury
present in soil, water, and sediment into MeHg (Gomes et al., 2019); and
(I) interference in the migration of piscivorous fish, which favors the
bioaccumulation and biomagnification of this metal in loco (Crespo-
Lopez et al., 2021).

The human populations residing in this region, including riverine
populations, indigenous people, quilombolas, rural and remote
communities, and residents of areas close to mining, are constantly
exposed to large concentrations of mercury through the consumption of
contaminated fish (Hacon et al., 2020; Crespo-Lopez et al., 2021,
Santos-Sacramento et al., 2021), especially carnivorous fish such as
mandubé, pirarucu, tucunareé, and trairdo which, because they are at
the top of the food chain, accumulate the highest levels of mercury
(Hacon et al., 2020). According to the World Health Organization (WHO),
is tolerable a weekly intake of 1.6 ug of MeHg per kilogram of body
weight (provisional tolerable weekly intakes — PTWI) (WHO, 2008),
however, considering the high levels of MeHg found in fish from this
region and that these populations, especially riverine populations,
usually eat several meals based on this fish weekly, the WHO limit can

be extrapolated easily (Hacon et al., 2020; Crespo-Lopez et al., 2021).

In fact, previous studies have already shown high concentrations
of mercury in the hair of riverine populations in the Amazon (Nevado et
al., 2010; Marques et al., 2013; Hacon et al., 2014; Arrifano et al.,
2018c). A recent review analyzed 34 articles focused on the main river
basins of the Amazon (Tapajos, Tocantins, and Madeira) and found that
mercury concentrations measured in these populations exceeded two to
ten times the values recommended by both the WHO (2,300 ng/g) and
the United States Environmental Protection Agency (1,000 ng/g), with
the main neurological symptoms manifested being cognitive, visual,
motor, somatosensory, and emotional deficits (Santos-Sacramento et
al., 2021). It is noteworthy that these symptoms are closely related to

altered glial cell functions, which represent key components for CNS
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homeostasis and defense (Yin et al.,, 2007; Takahashi et al., 2017;
Fujimura et al., 2019; Shinozaki et al., 2019).

It must also be considered that a large part of the riverine
populations of the Amazon live far from large urban centers, in small
communities near rivers; they live from manual subsistence activities;
they are exposed to contamination by improperly discarded substances;
they live in conditions with little or no basic sanitation, electricity and/or
access to medical services; and frequent school dropout (Arrifano et al.,
2018a; Machado et al., 2021). This scenario is particularly worrying
because it makes it difficult to develop intervention strategies for these
populations that are chronically exposed to high concentrations of

mercury (Crespo-Lopez et al., 2022).

A possible strategy that is easily accessible and low financial cost
would be to encourage the practice of physical activity/exercise, since,
to date, no drug has been effective in combating mercury neurotoxicity
(Aaseth et al.,, 2015; Aaseth et al., 2018; Bjerklund et al., 2019).
Although, at the outset, physical activity and exercise allude to distinct
phenomena (Dasso, 2019), both can imply positive changes for brain
health (Di Liegro et al., 2019; Bonanni et al., 2022). In fact, physical
exercise is known to induce cognitive improvements and positively affect
quality of life, as well as prevent and mitigate neurological disorders
(Augusto-Oliveira et al., 2023). In line with this, physical activity can
positively impact brain plasticity, preventing cortical atrophy, improving
brain and cognitive function (Erickson et al., 2013). It is noteworthy that
no data has been found in the literature concerning physical activity
practices. Therefore, considering the geographic, social and economic
scenario of these populations, the practice of physical activities related
to their lifestyle (such as commuting from home to work, games ball,
swimming, performing domestic and/or work-related tasks) may
represent an important therapeutic target capable of reducing or
preventing the impacts caused by exposure to mercury. Once the
potential impacts that physical activity and/or physical exercise have on

individuals exposed to mercury are known, it would be possible to design

61



strategies and protocols to assist in the prevention and mitigation of

problems caused by this metal.

Therefore, the objective of this study is to outline a physical
activity profile of riverine populations from islands of Lake Tucurui and
to assess whether the physical activity they engage in can prevent the
symptoms reported by riverine populations environmentally exposed to

mercury.

Material and Methods

The data and samples used in the present study were retrieved

from previous expeditions of the research group and treated as follows.
Study Population and Location

This study included volunteer riverine populations from
communities near Lake Tucurui (-3.800897, -49.811848), whose
formation took place from the construction of the fifth largest
hydroelectric plant in the world, the Tucurui Hydroelectric Power Plant.
For this study, we selected 202 adult individuals (over 18 years of age)
who have lived in riverine communities for at least two years and who

consume fish five times or more per week.
Ethical Aspects

This study followed the guidelines for reporting STROBE
observational studies (Von EIm et al., 2007) and the ethical principles of
the Declaration of Helsinki for research in human beings. It was
submitted for approval by the National Council for Ethics in Research
with Human Beings — CONEP (CAAE n°® 43927115.4.0000.0018). The
individuals signed an Informed Consent Form (ICF) as a criterion for

participation in the study.
Data and Sample Collection

A previous announcement of the project was made through visits,

meetings and communications with community health agents. The
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samples and data of each volunteer participant were collected using
meeting places and public spaces in the communities, such as schools.
Explanations/clarifications about the purposes of the study were
provided to the participants. After the volunteers' consent have been
recorded via the ICF, an interview was conducted with everyone to apply
the symptom and physical activity questionnaires. All questions were
read aloud by the applicator/researcher, explained and exemplified when
necessary. The data collected from the participants includes name,
gender, age, neurological symptoms presented by the participant at the
time of the interview, and the participants' physical activity profile related
to their routines (household chores, work, leisure, and moving from one
place to another). In addition, hair samples of approximately 0.1 g were
collected from the occipital region and stored in paper envelopes until

analysis.
Physical Activity Profile

The physical activity profile was obtained from the volunteers’
self-reports. Individuals who reported engaging in any physical activity
at least once a week were termed as “physically active” and were divided
into four groups based on the weekly frequency of their physical activity;
whereas individuals who reported not practicing any physical activity
weekly, such as not even once a week regularly, were termed
“sedentary”. It is noteworthy that we adopted these two terms only to
separate our two different groups since the data collected in our research
do not meet the appropriate criteria that define “physically active” and
“sedentary” behaviors established in the literature (WHO, 2010;
Ainsworth et al., 2011; Tremblay et al., 2017), although the precise
meaning of “sedentary behavior” is still under scientific discussion
(Magnon et al, 2018). In addition, the frequency of activities was
determined based on how many times per week individuals reported

engaging in each activity.
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Quantification of Mercury in Human Hair

Total mercury present in the hair samples was quantified by
inductively coupled plasma mass spectrometry (ICP-MS), as previously
described (Arrifano et al., 2018b; Lopes-Araujo et al., 2023).

Statistical Analysis

The normality of the data was analyzed using the D'Agostino-
Pearson test. Parametric and non-parametric data were represented as
mean and standard deviation or median and interquartile ranges,
respectively. Prevalence was tested using the Chi-square test or Fisher's
exact test when appropriate. Between-group differences were analyzed
using the Mann-Whitney test and correlations using Spearman's Rank
Correlation test. The P-value < 0.05 was considered significant in all

analyses.

Results and Discussion

A total of 202 participants were included in this study. Of these,
75 were male and 127 were female, 96 were between 26 and 45 years
of age and only 87 responded to the self-reported clinical symptoms

questionnaire (Table 1).

Table 1. Demographic characteristics and median hair mercury concentrations (ng/g)
of the study population stratified into groups: general population, physically active
individuals, sedentary individuals, and respondents to the clinical symptom
questionnaire. The values expressed as percentages indicate the prevalence between
genders.

Parameters General  Physically  Sedentary Clinical

population active symptom

(n=202) (n=92) (n=110) (n=287)

Men 75 (37%) 42 (46%) 33 (30%) 36 (41%)

Women 127 (63%) 50 (54%) 77 (70%) 51 (59%)
Age (median) 41 42.5 39 43

Hair mercury

(median ng/e) 8,189 8,481 7,339 7,452

Of the participants, 46% reported practicing daily physical
activities (Figure 1A). We found that the reported activities fell into three
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broad types (Figure 1B): Leisure (80%), which included activities such
as running, gym, swimming, and soccer; Work (18%), including fishing,
rowing, mowing, and weeding; and Household (2%), including sweeping
the house, washing clothes and general household chores. Further, the
five most frequently reported types of physical activity included walking
(42), soccer (22), swimming (17), mowing (12), and running (10) (Figure
2). This differs from previous observations, which reported that
occupation-related activities were the only type of physical activity
practiced by Amazonian populations (Machado et al., 2021).
Interestingly, leisure-time physical activity has been reported to provide
greater health benefits compared to physical activities performed in
home or work settings (Janssen and Voelcker-Rehage, 2023).
Moreover, it tends to be more prevalent in physical environments that
are conducive to leisure, such as those with sidewalks, bike paths, trails,
parks, and lower traffic density (Gao et al., 2015; Van Cauwenberg et

al., 2018), as is also observed in our study region.

A

M Physically active H Leisure Never a week
B Sedentary H Household 1 to 2 times a week
H Work m 3 to 4 times a week

B 5 to 7 times a week

Figure 1. Physical activity profile of the study population. (A) Proportion of
physically active versus sedentary individuals; (B) distribution of the three most
frequently reported types of physical activity; and (C) distribution of participants

according to four different weekly frequencies of physical activity.
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Figure 2. Frequency of types of physical activity reported by participants. Walking was
the most reported activity (n = 42), followed by soccer (n = 22), swimming (n = 17),
mowing (n = 12), and running (n = 10). Less frequent activities included gym workouts,
rowing, swinging arms, fishing, and weeding (each n = 3), as well as other occasional
tasks such as climbing hills, washing clothes, sweeping the house, household chores,

and work-related tasks (eachn = 1).

On the other hand, the marked discrepancy between leisure and
work or household physical activity prevalences (Figure 1B) may be
associated with methodological issues inherent to the use of a non-
standardized questionnaire, which may have led individuals to
misunderstand what it means to be “physically active”; or it may be
related to limitations faced by these populations, such as the difficulty
some respondents have in understanding the questions, especially
considering that some of them are illiterate. These factors make data
collection particularly challenging. In addition, the weekly frequency of
physical activity of the individuals was classified as never a week (for
activities performed sporadically), 1 to 2 times a week, 3 to 4 times a

week, and 5 to 7 times a week (Figure 1C).

Our results showed that the most frequently reported type of
physical activity was leisure (IC 95%, 71.3—-86.3) and most participants
engaged in physical activity 5 to 7 times per week (IC 95% 55.7-75.8).
Nonetheless, most individuals were sedentary (IC 95%, 47.3—61.5). The
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higher prevalence of sedentary individuals may be related to mercury
exposure-induced deficits in motor function. Indeed, mercury exposure
has been reported to impair motor function by disrupting myogenesis,
myotube formation, myotendinous junctions, neuromuscular junctions,
and satellite cell differentiation (Tam and Rand, 2024). Comparatively, a
recent study with birds demonstrated that short-term exposure mercury
can potentially affect bird’s flight biomechanic, weakening endurance

through reduced flight efficiency (Seewagen et al., 2022).

In this study, the median hair mercury concentration of the
general population was 8,189 ng/g (mean = 9,674 ng/g, ranging from
0.483 to 29,830 ng/g), with only 19 individuals showing hair mercury
concentrations within the limits recommended by international health
agencies (1,000 - 2,300 ng/g) (WHO, 2008).This finding is consistent
with the mean hair mercury concentrations generally found in Brazilian
Amazonian populations (>6,000 ng/g) (Castro and Lima, 2018) and daily
fish consumers (>10,000 ng/g) (WHO, 2008). Our results reveal 132
(65.3%) individuals with mercury concentrations above 6,000 ng/g and
85 (42.1%) above 10,000 ng/g, confirming that the population residing
along the lake of the Tucurui Hydroelectric Power Plant reservoir is
potentially exposed to a high mercury burden (Arrifano et al., 2018c). In
fact, mercury exposure among people living in riverine communities in
the Amazon is among the highest in the world due to the daily ingestion
of fish contaminated with the metal (Basu et al., 2018; Sharma et al.,
2019; Crespo-Lopez et al., 2021).

Furthermore, chronic exposure to mercury in the Amazon has
been shown to cause various clinical symptoms, including disturbances
in hearing, vision and motor function (such as tremors, lack of
coordination, muscle weakness, loss of balance, numbness, and limb
paralysis) (Harada et al., 2001; Fillion et al., 2011; Peplow and
Augustine, 2014; Costa Junior et al., 2017; Lacerda et al., 2020), which
are classic symptoms of Minamata disease observed in the 1953
episode in Japan (Ekino et al., 2007).
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Similarly, our research found that self-reported clinical symptoms
closely resemble those documented in the literature. Among the most
frequently reported were chronic or frequent headaches (61), dizziness
(56), muscle weakness (55), anxiety (45), blurred vision (44), numbness
(43), tremors (43), hand/foot tremors (35), memory loss (34), lip and
eyelid tremors (30), tinnitus (21), and speech disorders (9) (Figure 3).
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Figure 3. Frequency of self-reported clinical symptoms among study participants
potentially associated with chronic mercury exposure. The most reported symptoms
included headaches, dizziness, muscle weakness, and blurred vision. Values on the

vertical axis represent the number of individuals who reported each symptom.

Moreover, we found a positive but very weak correlation between
hair mercury concentration and the occurrence of self-reported

symptoms (r=0.18, p = 0.09) (Figure 4).
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Figure 4. Scatterplot showing the relationship between hair mercury
concentration (Hg) and the number of self-reported symptoms. Each point
represents one individual. Although a slight positive trend is observable, the
dispersion of points indicates a very weak Spearman’s correlation between the

variables, consistent with statistical results (r = 0.18, p = 0.09).

We hypothesize that a single mercury measurement is not
sufficient to demonstrate a potential relationship between hair mercury
concentrations and negative clinical outcomes, as mercury
concentrations may vary according to factors that influence the exposure
burden to the metal, such as the availability of alternative protein sources
(affecting the amount of fish consumed); preference for fish species at a
given trophic level; and seasonal variations in the occurrence of certain
fish species (Oliveira et al., 2010; Hacon et al., 2020; Vasconcellos et
al., 2021; Basta et al., 2023). Additionally, the biological half-life of
mercury in the body is as short as approximately 30 to 60 days (Park
and Zheng, 2012). It has also been shown that the half-life of mercury in
hair is around 40 to 50 days (Caito et al., 2018). Thus, the hair mercury
concentration measured in an individual in time A may be completely
different from that recorded in time B. Therefore, periodic monitoring is
recommended to build an exposure history for the individual or
population. It is noteworthy that genetic polymorphisms may potentially
influence the pharmacokinetics and pharmacodynamics of mercury,
leading to greater accumulation in the body and increasing the
susceptibility of certain populations to develop more severe clinical
outcomes (Arrifano et al., 2018b; Perini et al., 2021).

Additionally, a comparative analysis of hair mercury
concentrations between male and female participants revealed a
statistically significant difference, with men exhibiting notably higher
mercury concentrations (median = 11,289 ng/g) compared to women
(median = 6,688 ng/g) (p < 0.0001) (Figure 5).
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Figure 5. Boxplot comparing hair mercury concentrations (ng/qg) between
women and men in the study population. The median concentration for men
was 11,289 ng/g (IQR: 7,507-17,103 ng/g; mean = 13,388 ng/qg), while for
women it was 6,688 ng/g (IQR: 4,517-10,164 ng/g;, mean = 8,831 ng/g).
Statistical comparison using the Mann—Whitney U test indicated a significant
difference between groups (p = 0.0001). Boxes represent the interquartile
range (IQR), with the horizontal line within each box indicating the median;

whiskers extend to 1.5 times the IQR, and individual dots represent outliers.

by,

Means are indicated by a “x”.

This difference may reflect sex-related behavioral or physiological
factors, such as differences in dietary habits — although research
investigating sex-dependent differences in fish consumption patterns in
these populations is scarce — or in mercury metabolism and excretion
pathways. A recent study conducted with Munduruku Indigenous
communities found that fish consumption varies by gender and age, with
men accounting for approximately 45% of the fish available for
consumption, compared to 35% by women, and adults consuming
around 80%, in contrast to 20% by younger individuals (Vasconcellos et
al., 2021). In general, men require a higher caloric intake than women
due to their greater body mass and faster metabolic rate (ATSDR, 1999;
BRASIL, 2022).
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Experimental studies suggest that the distribution, retention,
metabolism, and excretion of mercury might be sex-dependent (Thomas
et al., 1987; Mergler et al., 2007; Pittman et al., 2020). Males tend to
retain higher concentrations of mercury compared to females, whereas
females generally exhibit greater mercury excretion through both feces
and urine (Thomas et al., 1987). These differences may be attributed, at
least in part, to variations in the expression of renal transporters, such
as organic anion transporters OAT1 and OAT3, which are involved in
mercury uptake and excretion (Pittman et al., 2020). These findings
highlight the importance of considering sex differences as a potential
modifier in studies assessing mercury exposure and its associated

health risks.

Conversely, no statistically significant differences were found
between hair mercury concentrations of physically active (median =
8,481 ng/g; IQR: 5,137-15,316) and sedentary individuals (median =
7,339 ng/g; IQR: 4,074-13,951) (p = 0.3) (Figure 6). Stratified analysis
by sex also showed no significant differences: among males, the
medians were 11,246 ng/g (active) and 11,496 ng/g (sedentary) (p =
0.9); and among females, 7,417 ng/g (active) and 6,151 ng/g (sedentary)
(p = 0.56).
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Figure 6. Boxplot comparing hair mercury concentrations (ng/g) between

physically activity and sedentary individuals. The median concentration for
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physically activity was 8,481 ng/g (IQR: 5,137-15,316 ng/g; mean = 10,052
ng/g), while for sedentary it was 7,339 ng/g (IQR: 4,074-13,951 ng/g; mean =
9,358 ng/g). Statistical comparison using the Mann—Whitney U test indicated
no significant difference between groups (p = 0.3). Boxes represent the

interquartile range (IQR), with the horizontal line within each box indicating the

%,

median; whiskers extend to 1.5 times the IQR. Means are indicated by a “x’.

This result may be related to the limited design of the
questionnaire, which — as a preliminary version — did not follow the
standards of validated and widely used instruments such as the
International Physical Activity Questionnaire (IPAQ) and the Global
Physical Activity Questionnaire (GPAQ) (Sember et al., 2020). IPAQ was
the first instrument developed to assess and monitor physical activity
levels in a way that allows for international comparability across
countries and regions (Sember et al., 2020). It has been validated and
tested for reliability among Brazilian adults (Matsudo et al., 2001).
Alternatively, the GPAQ was developed by the WHO as the
recommended instrument for assessing physical activity within the
STEPwise surveillance framework (WHO, 2021, 2024). It has been
implemented in more than 120 countries (Riley et al., 2016), and is the
most widely adopted tool for physical activity surveillance worldwide
(WHO, 2011).

Both questionnaires record “total physical activity,” encompassing
various components such as intensity, duration, and frequency of activity
(Sember et al., 2020; WHO, 2021). The GPAQ does this by assessing
three domains: occupational physical activity, transport-related physical
activity, and physical activity during leisure time (WHO, 2021). The
IPAQ, in addition to covering these three domains, also includes physical
activity related to household tasks (Wolin et al., 2008). Thus, both
provide a comprehensive physical activity profile capable of estimating
energy expenditure and determining whether an individual is physically
active, inactive or sedentary (WHO, 2010; Tremblay et al., 2017; Sember
et al., 2020; Herrmann et al., 2024).
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Because these are standardized tools that help minimize potential
biases arising from cultural variations across countries and regions, and
enhance the reproducibility, robustness, and consistency of research
data (Bauman et al., 2009), their use should be considered to support
studies investigating the potential role of physical activity or exercise in

mitigating mercury-induced adverse clinical outcomes.

Despite this, when comparing individuals who reported engaging
in physical activity 1-2 times per week with those who reported doing so
5-7 times per week, we found significantly lower hair mercury
concentrations in individuals with higher frequency of physical activity
(median = 8,361 ng/g; IQR: 4,456-12,562) compared to those with lower
frequency (median = 14,633 ng/g; IQR: 5,898-20,045) (p = 0.02) (Figure
7).
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Figure 7. Boxplot illustrating the comparison of hair mercury concentrations
(ng/g) between individuals engaging in low-frequency (1-2 times/week) and
high-frequency (6—7 times/week) physical activity. The median concentration
for low-frequency group was 14,633 ng/g (IQR: 5,898-20,045 ng/g; mean =
13,075 ng/g), while for high-frequency group it was 8,361 ng/g (IQR: 4,456—
12,662 ng/g; mean = 8,978 ng/qg). Statistical comparison using the Mann—
Whitney U test indicated a significant difference between groups (p = 0.02).
Boxes represent the interquartile range (IQR), with the horizontal line within
each box indicating the median; whiskers extend to 1.5 times the IQR, and

individual dots represent outliers. Means are indicated by a “x”.
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A recent study demonstrated that engaging in moderate or light
physical activity at least three days per week may reduce the incidence
of cognitive impairments, including memory loss and executive
dysfunction, in middle-aged and older adults (Liu et al., 2025). Moreover,
spending 150 minutes or more of physical activity per week — regardless
of intensity — was associated with a lower prevalence of cognitive
impairment (Liu et al., 2025). Indeed, physical activity can attenuate
neuroinflammation in older adults, potentially preventing cognitive
decline (Corlier et al., 2018). For instance, physically active individuals
have been shown to exhibit lower peripheral levels of “pro-inflammatory”
cytokines, greater total brain volume, and improved cognitive functions
such as memory, orientation, and executive function, compared to
sedentary individuals (Braskie et al., 2014; Nascimento et al., 2014;
Papenberg et al., 2016). Comparatively, a recent study suggested that
practicing moderate-intensity physical activity 3—4 times per week for
30-45 min for more than 12 weeks was positively correlated with

enhanced cognition in adults with Alzheimer disease (Zhou et al., 2022).

Additionally, the adoption of certain physical activity protocols —
particularly considering the type, duration and, intensity of the physical
activity — differently modulates the body’s redox balance and antioxidant
defenses (Abed et al., 2011; Pingitore et al., 2015; Fritzen et al., 2019).
For example, engaging in acute or high-intensity physical exercise may
increase oxidative stress levels and impair antioxidant capacity (Abed et
al.,, 2011; Meng and Su, 2024), with greater pronounced effects
observed in sedentary individuals (McGinley et al., 2009). Moreover,
unaccustomed and/or exhaustive exercise can lead to increased ROS

and oxidative stress-related tissue damage (He et al., 2016).

Oxidative stress might potentially modulate inflammation, leading
to neurodegenerative disturbances, diabetes, cardiovascular diseases,
chronic diseases, Alzheimer disease, and ageing (Leyane et al., 2022,
Verhaegen et al., 2022; Kiran et al., 2023). Furthermore, practicing
physical exercise leads to the natural muscle production of reactive

oxygen species (ROS) and reactive nitrogen species (RNS) due to the
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abnormal release of electrons from the mitochondrial electron transport
chain, leading to oxidative stress (Espinosa et al., 2023). However,
oxidative stress has a dual nature, damaging at high levels and
regulating at low levels (Pizzino et al., 2017; Meng and Su, 2024).
Indeed, chronic or regular physical exercise-induced low levels of
oxidative stress may lead to genetic adaptations, which increases
antioxidant capacity (Powers and Jackson, 2008; Lu et al., 2021; Souza
etal., 2022). Interestingly, the same effect can be observed in moderate-

intensity exercises (Parker et al., 2014; Zuo et al., 2015).

According to the WHO, adults aged 18 to 64 should engage in at
least 150 minutes per week (2 hours and 30 minutes) of moderate-
intensity aerobic physical activity or 75 minutes per week (1 hour and 15
minutes) of vigorous-intensity aerobic physical activity, performed in
bouts of at least 10 minutes (Bull et al., 2020). Although our study did
not assess the intensity or duration of each physical activity session, it is
reasonable to suggest that individuals reporting 5—7 sessions per week
may be closer to meeting the minimum physical activity levels
recommended by the WHO, and therefore may have lower capillary

mercury concentrations.

Although a broad body of evidence supports that physically active
individuals exhibit better health-related fitness levels and improved
clinical outcomes (Li, 2016), including enhanced cognitive function (Zhou
et al.,, 2022; Iso-Markku et al., 2024), delayed aging (Gajewski and
Falkenstein, 2016; Erickson et al., 2022), and reduced risk of stroke
(Ghozy et al., 2022; Cowan et al., 2023), cardiovascular disease (Dhuli
et al., 2022), and other non-communicable diseases (Geidl et al., 2020),
we found a weak and non-significant correlation between physical
activity and the number of self-reported symptoms (r = —-0.07, p = 0.53)
(Figure 8A). Moreover, a positive and weak correlation was also
observed between physical activity and hair mercury concentrations,

consistent with no significance (r=0.12, p = 0.27) (Figure 8B).
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Figure 8. Scatterplot showing the relationship between physical activity
(binary variable, in which 1 = practices physical activity and 0 = does not
practice physical activity) and the number of self-reported symptoms (A) and
the relationship between physical activity (binary variable) and hair mercury
concentrations (Hg) (B). Each point represents one individual. The distribution
of data points in both graphs suggests a very weak and non-significant
spearman’s correlation between variables (A, r=-0.07, p=0.53; B, r=0.12, p
=0.27).

As previously discussed, our study has some limitations that may
introduce potential biases. These include the use of a non-standardized
physical activity questionnaire, which consequently generated
inconclusive data regarding the population's physical activity profile.
Additionally, the relatively low number of volunteers participating in the
study and the societal context of the population, notably the relevant
occurrence of illiteracy among some individuals, are also weaknesses.
However, considering that data on physical activity or exercise in
Amazonian riverine populations and their possible health implications
are still quite scarce, our preliminary findings point to interesting
observations for future studies. Determining the physical activity profile
of riverine populations exposed to mercury in the Amazon is only the first
step in developing potentially effective strategies — such as physical
exercise protocols — to mitigate the adverse effects elicited by exposure
to this metal. Such protocols, when adapted to the population's context,
could be a valuable tool to adopt in a more comprehensive approach,

providing realistic recommendations for a healthier and safer lifestyle.
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Conclusion

This study involving 202 participants, with a significant portion
aged 26-45, revealed high concentrations of hair mercury, with a median
concentration of 8.189 ng/g, far exceeding the recommended limits by
international health agencies. While nearly half of the participants
reported engaging in daily physical activities, these were overwhelmingly
leisure-based. Methodological limitations, specifically the use of a non-
standardized questionnaire, and the occurrence of some illiterate
individuals may have influenced the observed discrepancy between

leisure and work/household physical activity.

Additionally, the significantly higher hair mercury concentrations
in male participants compared to females is likely related to distinct sex-
related metabolism and dietary patterns. However, further studies are
needed to test whether this hypothesis is true. Moreover, an interesting
finding was that no direct significant correlation was found between
overall physical activity status (active vs. sedentary) and hair mercury
concentrations, nor between physical activity and self-reported
symptoms, although a noteworthy observation emerged: individuals
engaging in physical activity 5-7 times per week exhibited significantly
lower hair mercury concentrations compared to those active only 1-2
times per week. This suggests that a higher frequency of physical activity
might play a role in relation to mercury concentration — a hypothesis that
needs to be further investigated with more robust methodologies,
especially with a standardized international questionnaire. The very
weak positive correlation found between hair mercury concentration and
the occurrence of self-reported clinical symptoms, commonly associated
with chronic mercury exposure, also requires further exploration with
additional sampling that allows for the construction of a history of

mercury exposures.

Overall, these findings underscore the significant mercury
exposure in this Amazonian population and highlight a potential,

although complex, interplay between physical activity frequency and
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mercury burden. Future research employing standardized assessment
tools and larger cohorts is crucial to confirm these preliminary
observations and to elucidate the mechanisms underlying the
relationship between physical activity, mercury exposure, and

associated health outcomes in this vulnerable population.
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5. CONCLUSOES INTEGRADORAS

As populagdes ribeirinhas da Amazbnia estdo historicamente
expostas ao mercurio presente no ambiente, notadamente em
decorréncia da atividade garimpeira, das queimadas florestais e do
consumo diario de peixes contaminados (Crespo-Lopez et al., 2022).
Diversos estudos demonstram que essas populacbes apresentam
concentragcdes de mercurio no cabelo significativamente superiores aos
limites recomendados por agéncias internacionais de saude -
especialmente entre individuos que consomem peixe diariamente
(WHO, 2008; Castro and Lima, 2018). Esse panorama € preocupante e
destaca a urgéncia de se elaborar estratégias alternativas e viaveis

voltadas a essas comunidades.

A partir de uma revisao abrangente da literatura, observamos que
ha evidéncias consistentes de que as células gliais desempenham um
papel central no contexto da intoxicagdo por metilmercurio, por meio de
diversos mecanismos homeostaticos e de defesa celular envolvidos em
desfechos tanto protetivos quanto deletérios. As nuances desse
envolvimento glial variam de acordo com o contexto, incluindo fatores
como idade, espécie, carga de exposi¢ao e a area do sistema nervoso
afetada — aspectos que influenciam diretamente a forma como esses

mecanismos sdo ativados (Leal-Nazaré et al., 2024).

Além disso, nossa revisao da literatura aponta o exercicio fisico
como uma estratégia terapéutica viavel, com potencial para melhorar a
cognicdo em condi¢cdes fisiologicas e patoldgicas, por meio da

modulagédo glial da neurogénese, da neuroinflamagédo e do
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remodelamento estrutural (Augusto-Oliveira et al., 2023). Curiosamente,
diversos mecanismos gliais modulados positivamente pelo exercicio
fisico também sdo negativamente afetados pelo metilmercurio,
sugerindo a existéncia de vias comuns entre os efeitos benéficos do

exercicio e os efeitos téxicos do mercurio.

Como ponto de partida, nosso estudo preliminar utilizou dados
coletados em expedi¢des anteriores a comunidades ribeirinhas situadas
as margens do lago da Usina Hidrelétrica de Tucurui, no estado do Para,
com o objetivo de tragcar um perfil da atividade fisica local e verificar se
o status da atividade fisica é capaz de influenciar nos sintomas clinicos
relatados pelos individuos do estudo. Os resultados sugerem que a
populagao estudada esta altamente exposta ao mercurio, com medianas
de mercurio capilar acima dos limites internacionais. Além disso, o perfil
de atividade fisica dessa populacdo, nunca antes avaliado, indica que a
pratica de exercicios fisicos € uma alternativa viavel a ser inserida no
cotidiano. Embora parte dos nossos resultados apontem para uma
direcdo contraria do que esperavamos, observamos uma possivel e
complexa relagdo entre os niveis de mercurio capilar e a pratica de

atividade fisica.

Sao necessarios novos estudos para verificar se a atividade fisica
pode, de fato, prevenir ou mitigar sintomas clinicos decorrentes da
exposicao ao mercurio. Para isso, recomenda-se o uso de ferramentas
mais robustas, amostras populacionais mais abrangentes e uma atengao
especial as particularidades socioculturais das comunidades envolvidas.
Ainda, mais do que a atividade fisica, seria critico investigar o potencial
de protocolos de exercicios fisicos na prevencao/mitigagao dos sintomas
da intoxicacao mercurial. Adicionalmente, é fundamental a realizagao de
ensaios experimentais que confirmem se as células gliais estao
diretamente envolvidas nos possiveis efeitos protetivos da atividade
fisica, assim como a identificacdo dos mecanismos moleculares e

celulares por tras dessa interagéo.
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