Metodologia de predição de perda de propagação e qualidade de vídeo em redes sem fio indoor por meio de redes neurais artificiais

Carregando...
Imagem de Miniatura

Data

2018-02-27

Título da Revista

ISSN da Revista

Título de Volume

item.page.theme

Editora(s)

Universidade Federal do Pará

Tipo de acesso

Acesso Abertoaccess-logo

Contido em

Citação

CRUZ, Hugo Alexandre Oliveira da. Metodologia de predição de perda de propagação e qualidade de vídeo em redes sem fio indoor por meio de redes neurais artificiais. Orientador: Gervásio Protásio dos Santos Cavalcante. 2018. 96 f. Dissertação (Mestrado em Engenharia Elétrica) - Instituto de Tecnologia, Universidade Federal do Pará, Belém, 2018. Disponível em: http://repositorio.ufpa.br/jspui/handle/2011/10029. Acesso em:.

DOI

Esta dissertação apresenta uma metodologia que visa auxiliar o planejamento de sistemas de redes sem fio indoor, que requerem o conhecimento prévio dos ambientes nos quais serão implantados. Assim, é necessário precisão na análise do sinal por meio de uma abordagem empírica estatística, que leva em consideração alguns fatores que influenciam na propagação do sinal indoor: arquitetura dos prédios; disposição de móveis no interior dos compartimentos; números de paredes e pisos de diversos materiais, além do espalhamento das ondas de rádio. A metodologia adotada é baseada em medições com uma abordagem cross-layer, que demonstra o impacto da camada física em relação à camada de aplicação, com o objetivo de prever o comportamento da métrica de Qualidade de Experiência (QoE), chamada de Peak signal-to-noise ratio (PSNR), em transmissões de vídeo em 4k em redes sem fio 802.11ac, no ambiente indoor. Para tanto, foram realizadas medições, que demonstram como o sinal/vídeo se degrada no ambiente estudado, sendo possível modelar esta degradação por meio de uma técnica de inteligência computacional, chamada Redes Neurais Artificiais (RNA), na qual são inseridos parâmetros de entrada como, por exemplo, a distância do transmissor ao receptor e o número de paredes atravessadas a fim de predizer perda de propagação e perda de PSNR. Para avaliar a capacidade de predição dos métodos propostos, foram obtidos os valores dos erros Root Mean Sqare (RMS) entre os dados medidos e os preditos, pelo os métodos de predição perda de propagação e perda de PSNR, sendo os valores respectivos 2,17 dB e 2,81 dB.

Agência de Fomento

browse.metadata.ispartofseries

item.page.isbn

Fonte

1 CD-ROM

item.page.dc.location.country

Citação

CRUZ, Hugo Alexandre Oliveira da. Metodologia de predição de perda de propagação e qualidade de vídeo em redes sem fio indoor por meio de redes neurais artificiais. Orientador: Gervásio Protásio dos Santos Cavalcante. 2018. 96 f. Dissertação (Mestrado em Engenharia Elétrica) - Instituto de Tecnologia, Universidade Federal do Pará, Belém, 2018. Disponível em: http://repositorio.ufpa.br/jspui/handle/2011/10029. Acesso em:.