SIBI! EM BREVE O RIUFPA ESTARÁ LIBERADO! AGUARDEM!
 

Previsão de raios utilizando técnicas de inteligência computacional e dados de sondagem atmosférica por satélite

Imagem de Miniatura

Tipo

Data

30-11-2017

Título da Revista

ISSN da Revista

Título de Volume

item.page.theme

Tipo de acesso

Acesso Abertoaccess-logo

Agência de fomento

Contido em

Citar como

ALVES, Elton Rafael. Previsão de raios utilizando técnicas de inteligência computacional e dados de sondagem atmosférica por satélite. 2017. 202 f. Orientador: Carlos Tavares da Costa Júnior; Coorientador: José Alberto Silva de Sá. Tese (Doutorado em Engenharia Elétrica) - Instituto de Tecnologia, Universidade Federal do Pará, Belém, 2017. Disponível em: <http://repositorio.ufpa.br/jspui/handle/2011/10087>. Acesso em:.

DOI

As descargas atmosféricas oferecem grande risco à população e às atividades que envolvem diferentes sistemas como telecomunicações, transmissão de energia elétrica, transporte e dentre outros. A previsão de ocorrência de raios pode contribuir para minimizar os riscos deste fenômeno natural. Com isso, esta tese apresenta uma proposta de modelo de previsão de raios baseada na utilização de dados de sondagens atmosféricas por satélite, validado com dados históricos de raios para áreas de estudo da região Amazônica no Brasil, mediante um estudo que considerou cinco casos de período de validade de previsão de raios: caso 1 (uma hora), caso 2 (duas horas), caso 3 (três horas), caso 4 (quatro horas) e caso 5 (cinco horas). Foram utilizadas duas metodologias diferentes de previsão: a primeira versão do previsor utilizou os dados de todas as áreas do estudo na formação aleatória dos conjuntos de treinamento, validação e teste. Em uma segunda versão, não se utilizou o critério de aleatoriedade dos dados na formação dos conjuntos de treinamento e teste, e os mesmos foram limitados para cada área do estudo, de forma a criar previsões individualizadas por área geográfica estudada. A ferramenta de engenharia utilizada para previsão foi uma Rede Neural Artificial (RNA) treinada com o algoritmo Levenberg-Marquardt backpropagation com a finalidade de classificar as modelagens preditivas de raios. A classificação consistiu na possibilidade de prever a ocorrência ou ausência de raios a partir do perfil vertical de temperatura do ar (temperatura do ar e temperatura do ponto de orvalho) obtido pelo satélite NOAA-19. Os resultados obtidos pela RNA, na primeira abordagem, foram comparados com metodologias tradicionais estabelecidas na literatura de previsão de raios, na segunda abordagem os resultados obtidos mostraram a saída do previsor para dados reais de teste. Os resultados de ambas abordagens mostraram que a RNA foi capaz de identificar adequadamente a que classe pertence um novo exemplo em relação às categorias de ocorrência ou ausência de raios. Para a primeira abordagem, obteve-se o melhor desempenho para caso 5, com uma acurácia de teste de 95,6%, enquanto que para a segunda abordagem obteve-se uma acurácia geral de teste de 82,04%.

browse.metadata.ispartofseries

Área de concentração

SISTEMAS DE ENERGIA ELÉTRICA

Linha de pesquisa

SISTEMAS ELÉTRICOS DE POTÊNCIA

CNPq

CNPQ::ENGENHARIAS::ENGENHARIA ELETRICA::SISTEMAS ELETRICOS DE POTENCIA

País

Brasil

Instituição

Universidade Federal do Pará

Sigla da Instituição

UFPA

Instituto

Instituto de Tecnologia

Programa

Programa de Pós-Graduação em Engenharia Elétrica

item.page.isbn

Fonte

1 CD-ROM

item.page.dc.location.country

Fonte URI