Please use this identifier to cite or link to this item: https://repositorio.ufpa.br/jspui/handle/2011/10337
metadata.dc.type: Tese
Issue Date: 14-Sep-2018
metadata.dc.creator: SOUZA JÚNIOR, Gilberto Nerino
metadata.dc.contributor.advisor1: SANTANA, Ádamo Lima de
metadata.dc.contributor.advisor-co1: MONTEIRO, Dionne Cavalcante
Title: Geração de tarefas de ensino adaptadas através de algoritmos bio-inspirados para crianças em fase inicial da alfabetização
Other Titles: Generation of teaching tasks adapted through bio-inspired algorithms for early literacy children
Citation: SOUZA JÚNIOR, Gilberto Nerino de. Geração de tarefas de ensino adaptadas através de algoritmos bio-inspirados para crianças em fase inicial da alfabetização. 2018. 110 f. Orientador: Ádamo Lima de Santana; Coorientador: Dionne Cavalcante Monteiro. Tese (Doutorado em Engenharia Elétrica) - Instituto de Tecnologia, Universidade Federal do Pará, Belém, 2018. Disponível em: <http://repositorio.ufpa.br/jspui/handle/2011/10337>. Acesso em:.
metadata.dc.description.resumo: Avanços em sistemas de aprendizagem ao longo das últimas duas décadas permitiram o desenvolvimento de tecnologias que auxiliam no engajamento de alunos. Embora esses sistemas possam usar procedimentos comportamentais para melhorar as habilidades em leitura, melhores resultados para cada aluno são obtidos na elaboração manual de um conjunto de tarefas por um especialista educacional. Todavia, o uso de um processo manual acaba acarretando demasiado tempo, esforço e subjetividade para a criação das tarefas de ensino. Adicionalmente, a geração automática de tarefas para o ensino da leitura pode ser inviável devido ao alto espaço de busca das possíveis combinações de tarefas. Este processo poderia considerar a adaptação da dificuldade de uma tarefa ao conhecimento do aluno, algo pouco explorado em trabalhos educacionais para crianças no início do aprendizado da leitura. A presente Tese apresenta uma abordagem para gerar tarefas do procedimento Matching-to-Sample para o ensino da leitura, adaptando suas dificuldades através de meta-heurísticas de otimização bio-inspiradas. Esta abordagem utiliza-se de resultados de pré-testes aplicados a alunos e da configuração de conteúdos de ensino determinados por tutores educacionais; esses dados permitem a utilização dos algoritmos de geração de tarefas e em seguida as tarefas podem ser apresentadas em softwares de aprendizagem. Experimentos demonstraram uma melhor convergência do algoritmo genético para este domínio, sendo que este algoritmo foi capaz de gerar tarefas em um nível de dificuldade adaptadas aos alunos e de acordo com pré-testes e configurações de atributos das tarefas definidas por psicólogos comportamentais. Como validação para este estudo, as tarefas foram aplicadas a um grupo de alunos em estágios iniciais da alfabetização obtendo efeitos satisfatórios no processo individual de aprendizagem. Adicionalmente foram implementados dois softwares interativos de de aprendizagem, um por meio do jogo digital e o outro por um aplicativo web, onde o uso do jogo digital com características lúdicas demostrou aceitação superior no uso de tarefas de ensino adaptadas para crianças em fase inicial da alfabetização.
Abstract: Advances in learning systems over the past two decades have enabled the development of technologies that help in the engagement of students. Although these systems may use behavioral procedures to improve reading skills, better outcomes for each student are obtained in the manual elaboration of a set of tasks by educational experts. However, the use of a manual process requires too much time, effort and subjectivity for the creation of tasks. Additionally, even with the aid of computational processes, the automatic generation may be impracticable due to the high search space for the possible combinations of tasks. This process could consider adapting the difficulty of a task to the student's knowledge, something little explored in educational work for children at the beginning of reading learning. The present thesis implements an approach to generate teaching tasks from the Matching-to-Sample procedure, adapting its difficulties through bio-inspired optimization meta-heuristics. This approach uses pre-test results applied to students and the configuration of teaching contents determined by educational tutors; these data allow the use of the algorithms to generate tasks and then the tasks can be presented in learning software. Experiments demonstrated a better convergence of the genetic algorithms for this domain, being able to generate tasks on a level of difficulty adapted to the students, and also according to pretests and configurations of attributes of the tasks defined by behavioral psychologists. As validation for this study, the tasks were applied to a group of students in the early stages of literacy achieving satisfactory effects in the individual learning process. In addition, two interactive learning software were implemented through a digital game and a web application, where the use of the digital game with playful features showed superior acceptance in the use of teaching tasks adapted for children in the initial phase of literacy.
Keywords: Geração de tarefas
Procedimento Matching-to-Sample,
Dificuldade adaptada
Algoritmos bio-inspirados
Softwares de aprendizado
Ensino da leitura XVI
Alfabetização - ensino auxiliado por computador
Task generation
Maching-to-sample procedure
Adapted difficulty
Bio-inspired algorithms
Learning software
Teaching of the reading
metadata.dc.subject.areadeconcentracao: COMPUTAÇÃO APLICADA
metadata.dc.subject.linhadepesquisa: INTELIGÊNCIA COMPUTACIONAL
metadata.dc.subject.cnpq: CNPQ::ENGENHARIAS::ENGENHARIA ELETRICA
metadata.dc.publisher.country: Brasil
Publisher: Universidade Federal do Pará
metadata.dc.publisher.initials: UFPA
metadata.dc.publisher.department: Instituto de Tecnologia
metadata.dc.publisher.program: Programa de Pós-Graduação em Engenharia Elétrica
metadata.dc.rights: Acesso Aberto
metadata.dc.source: 1 CD-ROM
Appears in Collections:Teses em Engenharia Elétrica (Doutorado) - PPGEE/ITEC

Files in This Item:
File Description SizeFormat 
Tese_Geracaotarefasensino.pdf3,76 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons