5G MIMO and LIDAR data for machine learning: mmWave beam-selection using deep learning

Carregando...
Imagem de Miniatura

Data

2019-08-29

Título da Revista

ISSN da Revista

Título de Volume

item.page.theme

Editora(s)

Universidade Federal do Pará

Tipo de acesso

Acesso Abertoaccess-logo

Contido em

Citação

DIAS, Marcus Vinicius de Oliveira. 5G MIMO and LIDAR data for machine learning: mmWave beam-selection using deep learning. Orientador: Aldebaro Barreto da Rocha Klautau Júnior. 2019. 61 f. Dissertação (Mestrado em Engenharia Elétrica) - Instituto de Tecnologia, Universidade Federal do Pará, Belém, 2019. Disponível em:http://repositorio.ufpa.br/jspui/handle/2011/12064 . Acesso em:.

DOI

Sistemas de comunicação modernos podem explorar o crescente número de dados de sensores usados atualmente em equipamentos avançados e reduzir a sobrecarga associada à configuração de links. Além disso, a crescente complexidade das redes sugere que o aprendizado de máquina, como redes neurais profundas, podem ser utilizadas efetivamente para melhorar as tecnologias 5G. A falta de grandes conjuntos de dados dificulta a investigação da aplicação de aprendizado profundo na comunicação sem fio. Este trabalho apresenta uma metodologia de simulação (RayMobTime) que combina um simulador de tráfego de veículos (SUMO) com um simulador de ray-tracing (Remcom’s Wireless InSite), para gerar canais que representem cenários 5G realísticos, bem como a criação de dados de sensores LIDAR (através do Blensor). O conjunto de dados criado é utilizado para investigar técnicas de beam selection de veículo para infraestrutura usando ondas milimétricas em diferentes arquiteturas, como arquitetura distribuída (uso das informações de apenas um veículo selecionado e processamento de dados no veículo) e arquiteturas centralizadas (uso de todas as informações presentes fornecidas pelos sensores em um dado momento, processando na estação base). Os resultados indicam que redes neurais profundas convolucionais podem ser utilizadas para beam selection sob uma estrutura de classificação de top-M. Também mostra que uma arquitetura distribuída baseada em LIDAR fornece desempenho robusto independentemente da taxa de penetração de veículos, superando outras arquiteturas, bem como pode ser usada para detecção de visada direta com precisão razoável.

Agência de Fomento

browse.metadata.ispartofseries

item.page.isbn

Fonte

1 CD-ROM

item.page.dc.location.country

Citação

DIAS, Marcus Vinicius de Oliveira. 5G MIMO and LIDAR data for machine learning: mmWave beam-selection using deep learning. Orientador: Aldebaro Barreto da Rocha Klautau Júnior. 2019. 61 f. Dissertação (Mestrado em Engenharia Elétrica) - Instituto de Tecnologia, Universidade Federal do Pará, Belém, 2019. Disponível em:http://repositorio.ufpa.br/jspui/handle/2011/12064 . Acesso em:.