Use este identificador para citar ou linkar para este item: https://repositorio.ufpa.br/jspui/handle/2011/16615
Tipo: Tese
Data do documento: 27-Mar-2024
Autor(es): OLIVEIRA, Ewerton Cristhian Lima de Oliveira
Primeiro(a) Orientador(a): SALES JUNIOR, Claudomiro de Souza de
Primeiro(a) coorientador(a): LIMA, Anderson Henrique Lima e
Título: Development of machine learning-based frameworks to predict permeability of peptides through cell membrane and blood-brain barrier
Citar como: OLIVEIRA, Ewerton Cristhian Lima de. Development of machine learning-based frameworks to predict permeability of peptides through cell membrane and blood-brain barrier. Orientador: Claudomiro de Souza de Sales Junior. 2024. 143 f. Tese (Doutorado em Engenharia Elétrica) - Instituto de Tecnologia, Universidade Federal do Pará, Belém, 2024. Disponível em: https://repositorio.ufpa.br/jspui/handle/2011/16615. Acesso em:.
Resumo: Peptídeos compreendem uma classe versátil de biomoléculas com diversas propriedades físicoquímicas e estruturais, além de inúmeras aplicações farmacológicas e biotecnológicas. Alguns grupos de peptídeos podem cruzar membranas biológicas, como a membrana celular e a barreira hematoencefálica humana. Pesquisadores tem explorado esta propriedade ao longo dos anos como uma alternativa ao desenvolvimento de novos medicamentos mais poderosos, tendo em vista que alguns peptídeos são carreadores de fármacos. Embora existam ferramentas baseadas em aprendizado de máquina desenvolvidas para prever cell-penetrating peptides (CPPs) e blood-brain barrier penetrating peptides (B3PPs), alguns pontos ainda não foram explorados dentro deste tema. Estes pontos abrangem o uso de técnicas de redução de dimensionalidade (RD) na etapa de pré-processamento, de descritores moleculares relacionados à biodisponibilidade de drogas, e de estrutura de dados que codificam peptídeos com modificações químicas. Portanto, a proposta principal desta tese é desenvolver e testar dois frameworks baseados em RD, o primeiro para prever CPPs e o segundo para prever B3PPs, avaliando também os descritores moleculares e estrutura de dados de interesse. Os resultados desta tese mostram que para a predição de penetração na membrana celular, o framework proposto atingiu 92% de acurácia no melhor desempenho em um teste independente, superando outras ferramentas criadas para o mesmo propósito, além de evidenciar a contribuição entre a junção de descritores baseado em sequência de aminoácidos e os relacionados a biodisponibilidade e citados na regra dos cinco de Lipinski. Além do mais, a predição de B3PPs pelo framework proposto revela que o melhor modelo que utiliza descritores moleculares estruturais, elétricos e associados a biodisponibilidade de compostos alcançou valores que superam 93% de acurácia média no 10-fold cross-validation e acurácia entre 75% e 90% no teste independente para todos as simulações, superando outras ferramentas de machine learning (ML) desenvolvidas para predizer B3PPs. Estes resultados mostram que os frameworks propostos podem ser usado como ferramenta adicional na predição de penetração de peptídeos através dessas duas biomembranas e estão disponíves como web servers gratuitos para uso.
Abstract: Peptides comprise a versatile class of biomolecules with diverse physicochemical and structural properties, in addition to numerous pharmacological and biotechnological applications. Some groups of peptides can cross biological membranes, such as the cell membrane and the human blood-brain barrier. Researchers have explored this property over the years as an alternative to developing more powerful drugs, given that some peptides can also be drug carriers. Although some machine learning-based tools have been developed to predict cell-penetrating peptides (CPPs) and blood-brain barrier penetrating peptides (B3PPs), some points have not yet been explored within this theme. These points encompass the use of dimensionality reduction (DR) techniques in the preprocessing stage, molecular descriptors related to drug bioavailability, and data structures that encode peptides with chemical modifications. Therefore, the primary purpose of this thesis is to develop and test two frameworks based on DR, the first one to predict CPPs and the second to predict B3PPs, also evaluating the molecular descriptors and data structure of interest. The results of this thesis show that for the prediction of penetration in the cell membrane, the proposed framework reached 92% accuracy in the best performance in an independent test, outperforming other tools created for the same purpose, besides evidencing the contribution between the junction of molecular descriptors based on amino acid sequence and those related to bioavailability and cited in Lipinski’s rule of five. Furthermore, the prediction of B3PPs by the proposed framework reveals that the best model using structural, electric, and bioavailability-associated molecular descriptors achieved average accuracy values exceeding 93% in the 10-fold cross-validation and between 75% and 90% accuracy in the independent test for all simulations, outperforming other machine learning (ML) tools developed to predict B3PPs. These results show that the proposed frameworks can be used as an additional tool in predicting the penetration of peptides in these two biomembranes and are available as free-touse web servers.
Palavras-chave: Peptides
Framework
Biomembranes
Machine learning
Peptídeos
Biomembranas
Framework
Aprendizado de máquina
Área de Concentração: COMPUTAÇÃO APLICADA
Linha de Pesquisa: INTELIGÊNCIA COMPUTACIONAL
CNPq: CNPQ::ENGENHARIAS::ENGENHARIA ELETRICA
País: Brasil
Instituição: Universidade Federal do Pará
Sigla da Instituição: UFPA
Instituto: Instituto de Tecnologia
Programa: Programa de Pós-Graduação em Engenharia Elétrica
Tipo de Acesso: Acesso Aberto
Attribution-NonCommercial-NoDerivs 3.0 Brazil
Fonte URI: Disponível na internet via correio eletrônico: bibliotecaitec@ufpa.br
Aparece nas coleções:Teses em Engenharia Elétrica (Doutorado) - PPGEE/ITEC

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
Tese_DevelopmentMachineLearning.pdf7,7 MBAdobe PDFVisualizar/Abrir


Este item está licenciado sob uma Licença Creative Commons Creative Commons