Classificação de tumores cerebrais: um estudo comparativo entre rede neural convolucional e rede neural convolucional com mecanismo de atenção

Carregando...
Imagem de Miniatura

Data

2024-09-30

Título da Revista

ISSN da Revista

Título de Volume

item.page.theme

Editora(s)

Universidade Federal do Pará

Tipo de acesso

Acesso Aberto
Attribution-NonCommercial-NoDerivs 3.0 Brazilaccess-logo

Contido em

Citação

SILVA, Ulrich Kauê Mendes Alencar da. Classificação de tumores cerebrais: um estudo comparativo entre rede neural convolucional e rede neural convolucional com mecanismo de atenção. Orientadora: Adriana Rosa Garcez Castro;. 2024. 68 f. Dissertação (Mestrado em Engenharia Elétrica) - Instituto de Tecnologia, Universidade Federal do Pará, Belém, 2024. Disponível em:https://repositorio.ufpa.br/jspui/handle/2011/16765 . Acesso em:.

DOI

Os tumores cerebrais são doenças neurológicas com elevado potencial de impacto na vida dos indivíduos acometidos, requerendo um diagnóstico rápido e preciso por meio de exames complementares de imagem, como a ressonância magnética, que é considerada padrão- ouro nesse processo. Considerando a necessidade de um diagnóstico mais rápido, sistemas de classificação baseados em Aprendizado de Máquina vêm sendo desenvolvidos e dentro deste contexto essa dissertação, tem como objetivo apresentar um estudo comparativo entre uma Rede Neural Convolucional (CNN) e uma CNN com mecanismo de atenção, desenvolvidas para a classificação de tumores cerebrais a partir de imagens de ressonância magnética. O estudo comparativo visa identificar o impacto do mecanismo de atenção no desempenho da CNN para classificação de tumores. Para desenvolvimento e avaliação dos modelos propostos foi utilizada uma base de dados pública, coletada do website Kaggle, e disponibilizada por Masoud Nickparvar, sendo esta composta por 7023 imagens de ressonâncias magnéticas cerebrais, segmentadas em quatro classes: glioma, meningioma, sem tumor e pituitário. Como resultado, a partir das métricas de desempenho obtidas, considerando a base de imagens usadas para teste em ambas as CNNs, observou-se uma melhora no desempenho da CNN após a introdução do mecanismo de atenção, onde a rede com esse mecanismo apresentou um aumento de 1.98% na métrica acurácia, 2.07% na métrica precisão, 2.18% na métrica sensibilidade e 1.72% na métrica F1-score em relação a CNN sem mecanismo de atenção, podendo ainda ser destacado os resultados obtidos em particular para a classe de tumor meningioma, visto que a CNN sem o mecanismo de atenção apresentou dificuldades para classificação desta classe e, após a integração do mecanismo de atenção o modelo obteve um aumento de acurácia de 6.54% para esta classe.

Agência de Fomento

CNPq - Conselho Nacional de Desenvolvimento Científico e Tecnológico

browse.metadata.ispartofseries

item.page.isbn

Fonte

item.page.dc.location.country

Citação

SILVA, Ulrich Kauê Mendes Alencar da. Classificação de tumores cerebrais: um estudo comparativo entre rede neural convolucional e rede neural convolucional com mecanismo de atenção. Orientadora: Adriana Rosa Garcez Castro;. 2024. 68 f. Dissertação (Mestrado em Engenharia Elétrica) - Instituto de Tecnologia, Universidade Federal do Pará, Belém, 2024. Disponível em:https://repositorio.ufpa.br/jspui/handle/2011/16765 . Acesso em:.