Por favor, use este identificador para citar o enlazar este ítem: https://repositorio.ufpa.br/jspui/handle/2011/6768
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.creatorRESTON FILHO, José Carlos-
dc.date.accessioned2015-06-16T17:02:30Z-
dc.date.available2015-06-16T17:02:30Z-
dc.date.issued2014-11-28-
dc.identifier.citationRESTON FILHO, José Carlos. Previsão multi-passos a frente do preço de energia elétrica de curto prazo no mercado brasileiro. 2014. 85 f. Orientadora: Carolina Mattos Affonso; Coorientador: Roberto Célio Limão de Oliveira. Tese (Doutorado em Engenharia Elétrica) - Instituto de Tecnologia, Universidade Federal do Pará, Belém, 2014.Disponível em: http://repositorio.ufpa.br/jspui/handle/2011/6768. Acesso em:.pt_BR
dc.identifier.urihttp://repositorio.ufpa.br/jspui/handle/2011/6768-
dc.description.abstractElectricity price forecasting is an important issue to all Market participants in order to decide bidding strategies and to establish bilateral contracts, maximizing their profits and minimizing their risks. Energy price typically exhibits seasonality, high volatility and spikes. Also, energy price is influenced by many factors such as power demand, weather, and fuel price. This work proposes a new hybrid approach for short-term energy price prediction. This approach combines auto-regressive integrated moving average (ARIMA) and neural network (ANN) models in a cascaded structure and uses explanatory variables. A two step procedure is applied. In the first step, the selected explanatory variables are predicted. In the second one, the energy prices are forecasted by using the explanatory variables prediction. The proposed model considers a multi-step ahead price prediction (12 weeks-ahead) and is applied to Brazilian market, which adopts a cost-based centralized dispatch with unique characteristics of price behavior. The results show good ability to predict spikes and satisfactory accuracy according to error measures and tail loss test when compared with traditional techniques. Additionally, is proposed a classifier model consisting of ANN and decision trees in order to explain the rules of price formation and, together with the predictor model, acting as an attractive tool to mitigate the risks of energy trading.pt_BR
dc.description.provenanceSubmitted by Edisangela Bastos (edisangela@ufpa.br) on 2015-05-26T22:37:44Z No. of bitstreams: 2 license_rdf: 22974 bytes, checksum: 99c771d9f0b9c46790009b9874d49253 (MD5) Tese_PrevisaoMultipassosFrente.pdf: 3784960 bytes, checksum: c62afd633577011ef91bb1e983a19efe (MD5)en
dc.description.provenanceApproved for entry into archive by Ana Rosa Silva (arosa@ufpa.br) on 2015-06-16T17:02:30Z (GMT) No. of bitstreams: 2 license_rdf: 22974 bytes, checksum: 99c771d9f0b9c46790009b9874d49253 (MD5) Tese_PrevisaoMultipassosFrente.pdf: 3784960 bytes, checksum: c62afd633577011ef91bb1e983a19efe (MD5)en
dc.description.provenanceMade available in DSpace on 2015-06-16T17:02:30Z (GMT). No. of bitstreams: 2 license_rdf: 22974 bytes, checksum: 99c771d9f0b9c46790009b9874d49253 (MD5) Tese_PrevisaoMultipassosFrente.pdf: 3784960 bytes, checksum: c62afd633577011ef91bb1e983a19efe (MD5) Previous issue date: 2014en
dc.description.sponsorshipFAPEAM - Fundação de Amparo à Pesquisa do Estado do Amazonas-
dc.language.isoporpt_BR
dc.publisherUniversidade Federal do Pará-
dc.rightsAcesso Aberto-
dc.subjectRedes neurais artificiaispt_BR
dc.subjectPredição do preço de energiapt_BR
dc.subjectMercado de curto prazopt_BR
dc.subjectComercialização de energiapt_BR
dc.subjectFiltros ARIMApt_BR
dc.subjectShort-term marketen
dc.subjectArtificial neural networksen
dc.subjectExplanatory variables selectionen
dc.subjectEnergy comercializationen
dc.subjectElectricity price forecastingen
dc.subjectARIMA filtersen
dc.titlePrevisão multi-passos a frente do preço de energia elétrica de curto prazo no mercado brasileiropt_BR
dc.typeTesept_BR
dc.publisher.countryBrasil-
dc.publisher.departmentInstituto de Tecnologia-
dc.publisher.initialsUFPA-
dc.subject.cnpqCNPQ::ENGENHARIAS::ENGENHARIA ELETRICA::SISTEMAS ELETRICOS DE POTENCIA::TRANSMISSAO DA ENERGIA ELETRICA, DISTRIBUICAO DA ENERGIA ELETRICA-
dc.contributor.advisor1AFFONSO, Carolina de Mattos-
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/2228901515752720-
dc.contributor.advisor-co1OLIVEIRA, Roberto Célio Limão de-
dc.contributor.advisor-co1Latteshttp://lattes.cnpq.br/4497607460894318-
dc.creator.Latteshttp://lattes.cnpq.br/1420719521938323-
dc.description.resumoA predição do preço da energia elétrica é uma questão importante para todos os participantes do mercado, para que decidam as estratégias mais adequadas e estabeleçam os contratos bilaterais que maximizem seus lucros e minimizem os seus riscos. O preço da energia tipicamente exibe sazonalidade, alta volatilidade e picos. Além disso, o preço da energia é influenciado por muitos fatores, tais como: demanda de energia, clima e preço de combustíveis. Este trabalho propõe uma nova abordagem híbrida para a predição de preços de energia no mercado de curto prazo. Tal abordagem combina os filtros autorregressivos integrados de médias móveis (ARIMA) e modelos de Redes Neurais (RNA) numa estrutura em cascata e utiliza variáveis explanatórias. Um processo em dois passos é aplicado. Na primeira etapa, as variáveis explanatórias são preditas. Na segunda etapa, os preços de energia são preditos usando os valores futuros das variáveis exploratórias. O modelo proposto considera uma predição de 12 passos (semanas) a frente e é aplicada ao mercado brasileiro, que possui características únicas de comportamento e adota o despacho centralizado baseado em custo. Os resultados mostram uma boa capacidade de predição de picos de preço e uma exatidão satisfatória de acordo com as medidas de erro e testes de perda de cauda quando comparado com técnicas tradicionais. Em caráter complementar, é proposto um modelo classificador composto de árvores de decisão e RNA, com objetivo de explicitar as regras de formação de preços e, em conjunto com o modelo preditor, atuar como uma ferramenta atrativa para mitigar os riscos da comercialização de energia.pt_BR
dc.publisher.programPrograma de Pós-Graduação em Engenharia Elétrica-
Aparece en las colecciones: Teses em Engenharia Elétrica (Doutorado) - PPGEE/ITEC

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
Tese_PrevisaoMultipassosFrente.pdf3,7 MBAdobe PDFVisualizar/Abrir


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons