Por favor, use este identificador para citar o enlazar este ítem:
https://repositorio.ufpa.br/jspui/handle/2011/7178
Registro completo de metadatos
Campo DC | Valor | Lengua/Idioma |
---|---|---|
dc.creator | ABREU, Ivanildo Silva | - |
dc.date.accessioned | 2016-12-19T13:20:56Z | - |
dc.date.available | 2016-12-19T13:20:56Z | - |
dc.date.issued | 2008-08-30 | - |
dc.identifier.citation | ABREU, Ivanildo Silva. Controle inteligente LQR neuro-genético para alocação de autoestrutura em sistemas dinâmicos multivariáveis. 2008. 247 f. Orientador: João Viana da Fonseca Neto. Tese (Doutorado em Engenharia Elétrica) - Instituto de Tecnologia, Universidade Federal do Pará, Belém, 2008.Disponível em: http://repositorio.ufpa.br/jspui/handle/2011/7178. Acesso:. | pt_BR |
dc.identifier.uri | http://repositorio.ufpa.br/jspui/handle/2011/7178 | - |
dc.description.abstract | In this thesis is presented a neural-genetic model, oriented to state space controllers synthesis, based on the Linear Quadratic Regulator design, for eigenstructure assignment of multivariable dynamic systems. The neural-genetic model represents a fusion of a genetic algorithm and a recurrent neural network to perform the weighting matrices selection and the algebraic Riccati equation solution, respectively. In order to a assess the LQR design, the procedure was applied in a 6th order aircraft model, 6th order doubly fed induction generator model of a wind plant and a 4th order electric circuit model which were used to evaluate the fusion of the computational intelligence paradigms and the control design method performance.The performance of the neural-genetic models are evaluated by the first and second statistics moments for the genetic algorithm, whereas the neural network is evaluated by surfaces of the energy function and of the norm of the infinity of the algebraic equation of Riccati and the results compared to the results obtained by using Schur’s Method. | pt_BR |
dc.description.provenance | Submitted by camilla martins (camillasmmartins@gmail.com) on 2016-12-09T15:11:41Z No. of bitstreams: 2 license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Tese_ControleInteligenteLQR.pdf: 2310311 bytes, checksum: 11af2680d8c53f2af5c55aa84abe2822 (MD5) | en |
dc.description.provenance | Rejected by Edisangela Bastos (edisangela@ufpa.br), reason: on 2016-12-15T12:03:10Z (GMT) | en |
dc.description.provenance | Submitted by camilla martins (camillasmmartins@gmail.com) on 2016-12-15T13:34:29Z No. of bitstreams: 2 license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Tese_ControleInteligenteLQR.pdf: 2310311 bytes, checksum: 11af2680d8c53f2af5c55aa84abe2822 (MD5) | en |
dc.description.provenance | Rejected by Edisangela Bastos (edisangela@ufpa.br), reason: on 2016-12-15T14:00:21Z (GMT) | en |
dc.description.provenance | Submitted by camilla martins (camillasmmartins@gmail.com) on 2016-12-15T14:24:22Z No. of bitstreams: 2 license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Tese_ControleInteligenteLQR.pdf: 2310311 bytes, checksum: 11af2680d8c53f2af5c55aa84abe2822 (MD5) | en |
dc.description.provenance | Approved for entry into archive by Edisangela Bastos (edisangela@ufpa.br) on 2016-12-19T13:20:56Z (GMT) No. of bitstreams: 2 license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Tese_ControleInteligenteLQR.pdf: 2310311 bytes, checksum: 11af2680d8c53f2af5c55aa84abe2822 (MD5) | en |
dc.description.provenance | Made available in DSpace on 2016-12-19T13:20:56Z (GMT). No. of bitstreams: 2 license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Tese_ControleInteligenteLQR.pdf: 2310311 bytes, checksum: 11af2680d8c53f2af5c55aa84abe2822 (MD5) Previous issue date: 2008-08-30 | en |
dc.description.sponsorship | CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior | pt_BR |
dc.language | por | pt_BR |
dc.publisher | Universidade Federal do Pará | pt_BR |
dc.rights | Acesso Aberto | pt_BR |
dc.subject | Teoria de controle | pt_BR |
dc.subject | Equação algébrica de Riccati | pt_BR |
dc.subject | LQR (Regulador Linear Quadrático) | pt_BR |
dc.subject | RNR (Rede Neural Recorrente) | pt_BR |
dc.subject | Algoritmos genéticos | pt_BR |
dc.subject | Controle inteligente | pt_BR |
dc.subject | Otimização | pt_BR |
dc.subject | Control theory | en |
dc.subject | Linear quadratic regulator | en |
dc.subject | Algebraic Riccati equation | en |
dc.subject | Optimization | en |
dc.subject | Recurrent neural network | en |
dc.subject | Intelligent control | en |
dc.title | Controle inteligente LQR neuro-genético para alocação de autoestrutura em sistemas dinâmicos multivariáveis | pt_BR |
dc.type | Tese | pt_BR |
dc.publisher.country | Brasil | pt_BR |
dc.publisher.department | Instituto de Tecnologia | pt_BR |
dc.publisher.initials | UFPA | pt_BR |
dc.subject.cnpq | CNPQ::ENGENHARIAS::ENGENHARIA ELETRICA::ELETRONICA INDUSTRIAL, SISTEMAS E CONTROLES ELETRONICOS::AUTOMACAO ELETRONICA DE PROCESSOS ELETRICOS E INDUSTRIAIS | pt_BR |
dc.subject.cnpq | CNPQ::ENGENHARIAS::ENGENHARIA ELETRICA::ELETRONICA INDUSTRIAL, SISTEMAS E CONTROLES ELETRONICOS::CONTROLE DE PROCESSOS ELETRONICOS, RETROALIMENTACAO | pt_BR |
dc.contributor.advisor1 | FONSECA NETO, João Viana da | - |
dc.contributor.advisor1Lattes | http://lattes.cnpq.br/0029055473709795 | pt_BR |
dc.creator.Lattes | http://lattes.cnpq.br/6144428536509111 | pt_BR |
dc.description.resumo | Nesta tese é apresentado um modelo neuro-genético, orientado a síntese de controladores no espaço de estado baseado no projeto do Regulador Linear Quadrático, para alocação de autoestrutura em sistemas dinâmicos multivariáveis. O modelo neuro-genético representa uma fusão de um algoritmo genético e uma rede neural recorrente para realizar a seleção das matrizes de ponderação e resolver a equação algébrica de Riccati, respectivamente. Um modelo de 6a ordem de uma aeronave, um modelo de 6a ordem de um gerador de indução duplamente alimentado de uma planta eólica e um modelo de 4a ordem de um circuito elétrico, são usados para avaliar a fusão dos paradigmas de inteligência computacional e o desempenho da metodologia do projeto de controle. O desempenho dos modelos neuro-genéticos são avaliados por momentos estatísticos de primeira e segunda ordem para o algoritmo genético, enquanto que a rede neural é avaliada por superfícies da função energia e da norma do infinito da equação algébrica de Riccati. São feitas comparações com o método de Schur. | - |
dc.publisher.program | Programa de Pós-Graduação em Engenharia Elétrica | pt_BR |
Aparece en las colecciones: | Teses em Engenharia Elétrica (Doutorado) - PPGEE/ITEC |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | |
---|---|---|---|---|
Tese_ControleInteligenteLQR.pdf | 2,26 MB | Adobe PDF | Visualizar/Abrir |
Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons