2014-09-182014-09-182001-10-25GARABITO CALLAPINO, German. Empilhamento sísmico por superfície de reflexão comum: um novo algoritmo usando otimização global e local. 2001. 65 f. Tese (Doutorado) - Universidade Federal do Pará, Centro de Geociências, Belém, 2001. Curso de Pós-Graduação em Geofísica.https://repositorio.ufpa.br/handle/2011/5759By using an arbitrary source-receiver configuration and without knowledge of the velocity model the recently introduced seismic data stacking method called Common Reflection Surface (CRS) simulates a zero-offset (ZO) section from multi-coverage seismic reflection data. For 2-D acquisition, as by-products provides three normal ray parameters: 1) the emergence angle (β0); 2) the radius of curvature of the Normal Incidence Point Wave (RNIP); and 3) the radius of curvature of the Normal Wave (RN). The CRS stack is based on the hyperbolic traveltime paraxial approximation depending on β0, RNIP and RN. In this thesis is presented a new algorithm of the CRS stack based on two-parameters and one-parameter search strategy combining global and local optimization methods for determine the three parameters that define the stacking surface (or operator). This is performed in three steps: 1) two-parameters search by applying global optimization to determine β0 and RNIP; 2) one-parameter search by applying global optimization to determine RN; and 3) three-parameters search by applying local optimization to determine three parameters, using as initial approximations the parameter triple of the earlier two steps. In the first two steps is used the Simulated Annealing (SA) algorithm and the Variable Metric algorithm is used in the third step. To simulate the conflicting dip events, for each ZO sample where there are interference of intersecting events is determined an additional parameter triple corresponding to a local minimum. The stacking along the respective operator for each particular event allows to simulate their interference in the simulated ZO section by means of their superposition. This new CRS stack algoritm was applied to synthetic data sets providing high-quality simulated ZO sections and high precision determination of the stack parameters in comparison with the forward modeling. Using the hyperbolic traveltime approximation for identical radii of curvature RNIP = RN, an algorithm called Common Diffraction Surface (CDS) stack was developed to simulate ZO sections for diffracted waves. In a similar way to the CRS stack procedure, this new algorithm also uses the SA and VM optimization methods to determine the optimal parameter couple (β0, RNIP) that define the best CDS operator. The main features of the algorithm are the data normalization, common-offset data, large aperture of the CDS operator and positive search space for RNIP. The application of the CDS stack algorithm in a synthetic dataset containing reflected and diffracted wavefields provides as main result a simulated ZO section containing diffracted events clearly defined. The post-stack depth migration of the ZO section locates correctly the discontinuities of the second interface.porAcesso AbertoMétodo de reflexão sísmicaEmpilhamento CRSEmpilhamento SDCEmpilhamento sísmico por superfície de reflexão comum: um novo algoritmo usando otimização global e localTeseCNPQ::CIENCIAS EXATAS E DA TERRA::GEOCIENCIAS::GEOFISICA::GEOFISICA APLICADA