2014-01-142014-01-142013-08-29GRANHEN, Ewerton R. Modelamento do transporte eletrônico em dispositivos moleculares. 2013.Orientador: Jordan Del Nero. 119 f. Tese (Doutorado em Engenharia Elétrica) - Instituto de Tecnologia, Universidade Federal do Pará, Belém, 2013. Disponível em: http://repositorio.ufpa.br/jspui/handle/2011/4595. Acesso em:.https://repositorio.ufpa.br/handle/2011/4595In the present work we simulate the transport properties and absorption spectra of the organic compound ethyl red. This is the first theoretical study of a specific pH indicator utilized as nano-device, based on quantum theory and a non-diffusive transport model. The charge distribution along the molecule is calculated via Ab initio technique as a function of an external electric field. Based on a resonant multilevel model we also calculate the current against bias voltage. Both the charge accumulation and the current present similar behavior, like resonant type conduction and asymmetric charge–voltage and current–voltage curves. Our main results suggest that the present system could operate as a bidirectional molecular transistor. We spread this methodology to another molecular device however, with three-terminal. For this system, our main finding is a negative differential resistance (NDR) in the charge Q as a function of an external electric field. To explain this NDR effect we apply a phenomenological capacitive model based on a quite general system composed of many localized levels (that can be LUMOs of a molecule). The capacitance accounts for charging effects that can result in Coulomb blockade (CB) in the transport. We show that this CB effect gives rise to a NDR for a suitable set of phenomenological parameters, like tunneling rates and charging energies. The NDR profile obtained in both Ab initio and phenomenological methodologies are in close agreement.porAcesso AbertoResistência diferencial negativaFórmula de LandauerFunção de GreenMecânica quântica acopladasDoador-ligação conjugada-aceitadorLandauer formulaCoupled quantum mechanicsGreen functionNegative differential resistanceDonor-conjugated bridge-acceptorModelamento do transporte eletrônico em dispositivos molecularesTeseCNPQ::ENGENHARIAS::ENGENHARIA ELETRICA::TELECOMUNICACOES