2025-02-032025-02-032024-10-09PINTO, Eliziane de Souza. Afinidades petrológicas e geocronologia U-Pb em zircão de ortognaisses do Complexo Gnáissico-Migmatítico Água Azul, Terreno Sapucaia, Província Carajás. Orientador: Davis Carvalho de Oliveira. 2024. xvii, 75 f. Dissertação (Mestrado em Geoquímica e Petrologia) - Universidade Federal do Pará, Instituto de Geociências, Programa de Pós-Graduação em Geologia e Geoquímica. Belém, 2024. Disponível em: https://repositorio.ufpa.br/jspui/handle/2011/16803. Acesso em:.https://repositorio.ufpa.br/jspui/handle/2011/16803The Água Azul do Norte area is part of the geological context of the Carajás Province, precisely in the Sapucaia Terrain, according to the recent tectonic compartmentalization proposals presented by the Granitoid Petrology Research Group (GPPG/UFPA). This region is formed by a mesoarchean orthognathic basement with TTG affinity (Água Azul GneissicMigmatitic Complex; 2.93 Ga) associated with late Mesoarchean intrusions with sanukitoid signatures (Água Azul and Água Limpa Granodiorites; 2.88-2.87 Ga), high-Ba-Sr sodic (Nova Canadá Granodiorite; 2.89-2.87 Ga) and high-K calc-alkaline (Boa Sorte Granite; 2.89- 2.85 Ga) signatures. The review of geological and petrographic data indicated that the TTG crust of Água Azul do Norte is compositionally heterogeneous and records strong evidence of progressive metamorphism and migmatization. Therefore, this work reclassifies this TTG basement as being formed by orthogneisses, which occasionally present variations to tonalitic to quartz dioritic compositions that resemble fragments of a more primitive, intensely deformed and gneissified crust. These varieties show compositional banding in an E-W direction, often disturbed by shear bands and drag folds. Considering the classification of migmatites, they have an orthognathic paleosome and leucosomes rich in Qz+Pl±Bt parallel to the banding (stromatic metatexite) and frequentely outlined by mafic aggregates (melanosome rich in biotite and hornblende). They form four compositional varieties: i) hornblende±biotite tonalitic orthogneiss (HBTnl), ii) clinopyroxene-hornblende tonalitic orthogneiss (CHTnl), iii) epidote-biotite orthogneiss quartz diorite (EBQzD) and iv) hornblende-biotite orthogneiss quartz diorite (HBQzD). They present a large proportion of mafic minerals (M'> 15%), especially biotite and hornblende, which can occur slightly stretched along the foliation plane. Plagioclase and secondary quartz are abundant and occur in the matrix or, in the case of plagioclase, as phenocrysts, while alkali-feldspar and primary quartz are practically insignificant. Whole rock geochemical analysis indicated that samples MED-120A (EBQzD) and MEP-53B (HBQzD) present moderately magnesian character, medium-K calcium-alkaline signature, relative depletion in K2O, MgO, Ba, Ni and Cr and enrichment in Na2O, Al2O3, TiO2, Fe2O3 and Zr, reflecting a certain affinity with traditional tonalite-trondhjemitic associations. The presence of many zircon crystals with igneous features preserved in these samples marks the crystallization age of the protolith at 3.06 Ga, suggesting that they are crustal fragments approximately 100 Ma older than the underlying crust (Água Azul Orthognathic Complex). MED-144 (HBTnl) exhibited a strongly magnesian character, high-K calcium-alkaline signature, high K2O/Na2O ratio and enrichment in MgO, Ba, Ni and Cr, very similar to the composition observed in sanukitoids. The U-Pb data obtained for this sample indicated a crystallization age of 2.92 Ga, similar to that observed in sanukitoids described in the Ourilândia do Norte region (Arraias Granodiorite). The other samples showed significant contents of compatible elements (e.g. Fe, Mg, Ni, Cr) and moderate contents of incompatible elements (e.g. K, Rb, Ba, Sr, Zr, Ti) and revealed an intermediate behavior between TTGs and granitoids enriched in Mg, as well as a strong affinity with the São Carlos Orthogneiss (2.93 Ga) described in the same terrain. Concordant U-Pb ages obtained for samples MED-95A (HBTnl) and EDC-28B (CHTnl) indicated acrystallization at 2.95-2.93 Ga contemporaneous with the emplacement of the Água Azul TTGs and the São Carlos Orthogneiss. The textural behavior of the quartz and mafic minerals indicates dynamic recrystallization mechanisms at intermediate to high temperatures (~500-650ºC), while the morphology observed in the migmatites (stromatic metatexitic and leucosomes with hydrated minerals) suggests that there was a low amount of melt produced and fluids participation in the partial melting process. Combined with the mineral paragenesis (Pl+Qz+Bt±Hbl±Ep), these factors point to a granitic protolith metamorphosed under amphibolite facies conditions, with the migmatization being strongly contemporaneous with the deformation and peak of the regional metamorphism described in the Carajás region (2.89 Ga; MED-95A).Acesso AbertoAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/OrtognaisseTTGSanukitoideTerreno SapucaiaMesoarqueanoAfinidades petrológicas e geocronologia U-Pb em zircão de ortognaisses do Complexo Gnáissico-Migmatítico Água Azul, Terreno Sapucaia, Província Carajás.DissertaçãoCNPQ::CIENCIAS EXATAS E DA TERRA::GEOCIENCIASEVOLUÇÃO CRUSTAL E METALOGÊNESEGEOQUÍMICA E PETROLOGIA