2024-11-132024-11-132023-09-29SILVA, Romário da Costa. Identificacao de larvas de mosquitos do genero aedes utilizando redes neurais convolucionais. Orientador: Carlos Renato Lisboa Francês; Coorientador: José Jailton Henrique Ferreira Júnior. 2023. 71 f. Dissertação (Mestrado em Engenharia Elétrica) - Instituto de Tecnologia, Universidade Federal do Pará, Belém, 2023. Disponível em:https://repositorio.ufpa.br/jspui/handle/2011/16649 . Acesso em:.https://repositorio.ufpa.br/jspui/handle/2011/16649Arboviruses transmitted by mosquitoes of the Aedes genus constitute a threat to public health. Detection and control of these vectors are critical to preventing disease outbreaks including Dengue, Chikungunya, Zika and Yellow Fever. Computer vision and deep learning techniques have been increasingly used in epidemiological control, mainly with regard to the classification and detection of these mosquitoes. In this sense, three models are proposed for classification, detection and segmentation of mosquito larvae based on the use of convolutional neural networks (CNN) and object detection algorithms (YOLO). For this purpose, a dataset was created for training purposes. The dataset is composed of images of larvae, being categorized between Aedes and Non-Aedes classes. The results show that the proposed models are promising strategies and achieved accuracy values of 86.71%, mAP (Mean Average Precision) of 88.3% and 95.7% for the tasks of classification, detection and segmentation, respectively.Acesso AbertoAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/Redes neuraisArbovirosesVisão computacionalAprendizagem profundaComputer visionDeep learningArbovirusesNeural networkIdentificacao de larvas de mosquitos do genero aedes utilizando redes neurais convolucionaisDissertaçãoCNPQ::ENGENHARIAS::ENGENHARIA ELETRICA::TELECOMUNICACOESINTELIGÊNCIA COMPUTACIONALCOMPUTAÇÃO APLICADA