2019-10-302019-10-302019-10-02FELIX, Williamy Queiroz. Charnoquitos de Ourilândia do Norte (PA): geologia, natureza e implicações tectônicas para a Província Carajás. Orientador: Davis Carvalho de Oliveira. 2019. 78 f. Dissertação (Mestrado em Geologia e Geoquímica) – Instituto de Geociências, Universidade Federal do Pará, Belém, 2019. Disponível em: http://repositorio.ufpa.br/jspui/handle/2011/11987. Acesso em: .https://repositorio.ufpa.br/handle/2011/11987The granite-charnockite association from Carajás Province is spatially associated with gabbronorites, which intrude Mesoarchean granitoids and form a NE-SW elongated pluton with subordinate lenses E-W oriented showing subvertical (70-80°) foliation. They consist of leucocratic rocks (M' = 21.1 - 32.9) with well-preserved magmatic textures and medium- to coarse-grained. The main mafic phases are pyroxene [enstatite/ferrosilite and augite/diopside (Wo1En66Fs33 to Wo49En38Fs14)], amphibole [hornblende (0.88 ≥ Mg/(Mg+Fe2+) ≤ 0.43)], and biotite [0.68 ≥ Fe/(Fe + Mg) ≥ 0.31]. These rocks are considered syntectonic plutons emplaced in a postcollisional setting, which underwent dynamic recrystallization controlled by subgrain rotation (SGR; 400-450 °C) in a sinistral transpressive deformational regime driven by pure shear. The granite-charnockite association and gabbronorite present very similar geochemical behavior: magnesian affinity [whole-rock 0.8 ≥ FeOt/(FeOt+MgO) ≤ 0.5], calc-alkaline and high-K calcic-alkaline trends and metaluminous character. Magma ascent and emplacement are reconstructed as a singlestage process with decreasing temperatures. Crystallization temperatures range from 1100 to ~700 °C for pyroxenes, and 809 to 713 °C for amphiboles. Calculated crystallization pressures were 190 to 310 MPa resulting in crystallization depths of 7.0 to 10.5 km. Observed mineral assemblages and compositions of the main mafic minerals imply crystallization under relatively oxidizing conditions (NNO -9.8 to -12.6). H2O contents ranging from 4.1 to 6.5 wt% and indicates that water played an important role in the magmatic evolution of the studied rocks. Hydration was responsible for differences in the modal contents of monzogranite varieties. Gabbronorites were probably formed by partial melting of depleted mantle source (low HFSE), and orthopyroxene-bearing granitoids originated through fractional crystallization from magma similar in composition to gabbronorite.Acesso AbertoGeoquímica - ParáPetrologiaMineralogiaProvíncia CarajásCrátonsCharnoquitos de Ourilândia do Norte (PA): geologia, natureza e implicações tectônicas para a Província Carajás.DissertaçãoCNPQ::CIENCIAS EXATAS E DA TERRA::GEOCIENCIASPETROLOGIA E EVOLUÇÃO CRUSTALGEOQUÍMICA E PETROLOGIA