Please use this identifier to cite or link to this item: http://repositorio.ufpa.br/jspui/handle/2011/10648
Compartilhar:
Type: Dissertação
Issue Date: 21-Dec-2018
Authors: FERREIRA, Mylena Nazaré Medeiros dos Reis
First Advisor: CASTRO, Adriana Rosa Garcez
Title: Estrutura competitiva de redes neurais autoassociativas para classificação de fadiga mental através de sinais de eletroencefalografia
Other Titles: Competitive structure of self-learning neural networks to classify mental fatigue through electroencephalography signals
Citation: FERREIRA, Mylena Nazaré Medeiros dos Reis Ferreira. Estrutura competitiva de redes neurais autoassociativas para classificação de fadiga mental através de sinais de eletroencefalografia. 2018. 53 f. Dissertação (Mestrado) - Universidade Federal do Pará, Instituto de Tecnologia, Belém, 2018. Programa de Pós-Graduação em Engenharia Elétrica. Disponível em: <http://repositorio.ufpa.br/jspui/handle/2011/10648>. Acesso em:.
Resumo: A complexidade da analise da fadiga mental em pessoas saudaveis e evidenciada pela ausencia de perturbacoes especificas no sinal eletroencefalografico e pela singularidade e variabilidade do perfil cognitivo de cada individuo. Identificar esse tipo de estado mental requer a analise de diversos fatores que envolvem o comportamento das regioes cerebrais em diversas faixas de frequencia. No contexto da industria, a fadiga mental compromete a eficiencia da cadeia produtiva ao afetar a percepcao (concentracao e atencao) dos individuos, o que aumenta o risco de acidentes e os custos de producao. Desta forma, o monitoramento da condicao cognitiva faz-se necessario para a manutencao do desempenho produtivo e cognitivo do individuo avaliado. Dentro deste contexto, este trabalho propoe um sistema para classificacao da fadiga mental baseado em uma estrutura competitiva de Redes Neurais Autoassociativas e em sinais obtidos atraves de um eletroencefalografo. O vetor de caracteristicas usado como entrada para o sistema e composto pelas informacoes normalizadas de tres faixas de frequencias (teta, beta e alfa) e quatro metricas que, de acordo com a literatura, diferenciam estados mentais a partir dos dados eletroencefalograficos, em termos de densidade de energia espectral. Os resultados obtidos mostram a eficiencia do sistema proposto e a aplicabilidade das redes neurais autoassociativas para problemas de classificacao de padroes.
Abstract: The complexity of mental fatigue signals in healthy people is due to the absence of specific perturbations in the electroencephalographic activity, and by the singularity and variability of the cognitive profile of each individual. Identifying this mental state requires the analysis of several factors that involve the brain behavior in its regions in various frequency bands. In concern to the industry, mental fatigue compromises the efficiency of the production chain by affecting the perception (concentration and attention) of people, which increases the risk of accidents and production costs. Thus, monitoring the cognitive condition is necessary for the maintenance of the productive and cognitive performance of the evaluated subject. This work proposes the classification of fatigue using a competitive structure of Associative Neural Networks. This type of neural network allows to find the association between the input data and the reconstructed data from a compact architecture, being indicated for real-time applications. The characteristics vector used for classification is composed of the normalized information of three frequency bands (theta, beta and alpha) and four metrics that, according to the literature, differentiate mental states from electroencephalographic data in terms of Power Spectral Density. The results show the capacity and usability of autoassociative neural networks in patterns classification.
Keywords: Redes neurais autoassociativas
Classificacao de fadiga mental
Sinais EEG Pre-processamento de Sinal, Estruturas
Pre-processamento de Sinal
Estruturas competitivas
Eletroencefalografia
Concentration Area: COMPUTAÇÃO APLICADA
Research Line: INTELIGÊNCIA COMPUTACIONAL
CNPq: CNPQ::ENGENHARIAS::ENGENHARIA ELETRICA
Country: Brasil
Publisher: Universidade Federal do Pará
Institution Acronym: UFPA
Department: Instituto de Tecnologia
Program: Programa de Pós-Graduação em Engenharia Elétrica
metadata.dc.rights: Acesso Aberto
Source: 1 CD-ROM
Appears in Collections:Dissertações em Engenharia Elétrica (Mestrado) - PPGEE/ITEC

Files in This Item:
File Description SizeFormat 
Dissertacao_Estruturacompetitivaredes.pdf6,42 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons