Please use this identifier to cite or link to this item: http://repositorio.ufpa.br/jspui/handle/2011/9470
Compartilhar:
Type: Dissertação
Issue Date: 11-Oct-2017
Authors: LIMA, Flávia Ayana Nascimento de
First Advisor: OLIVEIRA, Roberto Célio Limão de
First Co-Advisor: CARDOSO, Diego Lisboa
Title: Agrupamento de fornos de redução de alumínio utilizando os algoritmos Affinity Propagation, Mapa auto–organizável de Kohonen (som), Fuzzy C–Means e K–Means
Citation: LIMA, Flávia Ayana Nascimento de. Agrupamento de fornos de redução de alumínio utilizando os algoritmos Affinity Propagation, Mapa auto–organizável de Kohonen (SOM), Fuzzy C–Means e K–Means. 2017. 117 f. Dissertação (Mestrado) - Universidade Federal do Pará, Instituto de Tecnologia, Belém, 2017. Programa de Pós-Graduação em Engenharia Elétrica. Disponível em: <http://repositorio.ufpa.br/jspui/handle/2011/9470>. Acesso em:.
Resumo: O constante avanço da tecnologia requer medidas que beneficiem as indústrias em busca do lucro e da competitividade. Em relação à indústria de minerais, o processo de fundição de alumínio geralmente possui grande número de células, também chamado de forno ou cuba de redução, produzindo alumínio em um procedimento contínuo e complexo. Um monitoramento analítico é essencial para aumentar a vantagem competitiva dessa indústria, por exemplo, durante a operação, algumas células compartilham comportamentos semelhantes às outras, formando grupos ou clusters de células. Esses clusters dependem de padrões de dados geralmente implícitos ou invisíveis para a operação, mas que podem ser encontrados por meio da análise de dados. Neste trabalho, são apresentadas quatro técnicas de agrupamento, o Affinity Propagation, o mapa auto–organizável de Kohonen (SOM), o algoritmo difuso Fuzzy C–Means (FCM) e o K–Means. Essas técnicas são utilizadas para encontrar e agrupar as células que apresentam comportamentos semelhantes, de acordo com sete variáveis tais como as que consiste no processo de redução do alumínio. Este trabalho visa trazer o benefício do agrupamento, principalmente pela simplificação da análise da linha de produção do alumínio, uma vez que um grande número de células pode se resumir em um único grupo, o que pode fornecer informações mais compactas para o controle e a modelagem dos dados. Este benefício de identificar os dados que possuem características semelhantes e agrupá–los faz com que a análise dos grupos se torne mais simples para quem irá manusear esses dados futuramente. Nesse trabalho de dissertação também será feito a identificação da quantidade ideal de grupo em cada técnica utilizada.
Abstract: The continuous development of technology accounts for measures that provide industries benefits to grant them profitability and competitive advantage. In the mineralogy field, aluminum smelting usually requires substantial number of cells, also known as reduction pots, to produce aluminum in a continuous and complex process. Analytical monitoring is essential for those industries’ competitive advantage, given that during operation some cells show behavior similar to others, thereby forming clusters of cells. These clusters depend on data patterns usually implicit or invisible for the operation, but can be found by data analysis techniques. In this work four clustering techniques are presented to that end: the Affinity Propagation; the Kohonen Self Organizing Map; the Fuzzy C–Means; and the K–Means Algorithm. These techniques are used to find and group cells that share similar behavior, by analysing seven variables which are closely related to the aluminum reduction process. This work aims at addressing the benefits of clustering, especially by simplifying the aluminum potline analysis, once a large group of cells might be summarized in one sole group, what can provide more compact yet rich information for data driven modeling and control. Moreover, the identification of similar data patterns in clusters makes the task of those who is going to be in charge of analyzing these dats. This work also identifies the ideal cluster size for each technique applied.
Keywords: Agrupamento - Técnicas
Redução do alumínio
Mineração de dados
Concentration Area: COMPUTAÇÃO APLICADA
Research Line: INTELIGÊNCIA COMPUTACIONAL
CNPq: CNPQ::ENGENHARIAS::ENGENHARIA ELETRICA
Country: Brasil
Publisher: Universidade Federal do Pará
Institution Acronym: UFPA
Department: Instituto de Tecnologia
Program: Programa de Pós-Graduação em Engenharia Elétrica
metadata.dc.rights: Acesso Aberto
Source: 1 CD-ROM
Appears in Collections:Dissertações em Engenharia Elétrica (Mestrado) - PPGEE/ITEC

Files in This Item:
File Description SizeFormat 
Dissertacao_AgrupamentoFornosReducao.pdf6,15 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons