Teses em Geofísica (Doutorado) - CPGF/IG
URI Permanente para esta coleçãohttps://repositorio.ufpa.br/handle/2011/2357
O Doutorado Acadêmico pertente a o Programa de Pós-Graduação em Geofísica (CPGF) do Instituto de Geociências (IG) da Universidade Federal do Pará (UFPA).
Navegar
Navegando Teses em Geofísica (Doutorado) - CPGF/IG por Orientadores "CRUZ, João Carlos Ribeiro"
Agora exibindo 1 - 5 de 5
- Resultados por página
- Opções de Ordenação
Item Acesso aberto (Open Access) Estimativa de parâmetros em meios VTI usando aproximações de sobretempo não hiperbólicas(Universidade Federal do Pará, 2015-09-30) PEREIRA, Rubenvaldo Monteiro; CRUZ, João Carlos Ribeiro; http://lattes.cnpq.br/8498743497664023Transversely isotropic (TI) media is a more realistic model for processing seismic data, for example, fractured media with preferred fracture direction, or composite by periodic thin layers. In particular, TI media with vertical symmetry axis (VTI) are widely used as models for P-wave propagation in shales, abundant rock in hydrocarbon reservoirs. However, the P-wave propagation in homogeneous media VTI have as their main characteristics, depend on four parameters of rigidity and also to possess: complicated algebraically phase velocity equation, difficult group velocity equation to explain and moveout equation nonhyperbolic. Therefore, several authors have presented parameterization and obtained approximations to these equations depending on three parameters only. Among these, the moveout approximations have been widely used in inverse methods to estimate lithological parameters in homogeneous media VTI. Such methods have generally been successful in estimated stacking velocity vn and the anellipticity parameter η, since these are the only ones required for generating initial models for the steps of seismic processing in the time domain. One of the most used methods for estimating parameters is the basedsemblance velocity analysis, though, because this method is limited to sections with small offset-depth ratio, adaptations for anisotropic media, considering nonhyperbolic moveout approximatios are required. In this paper, based on anelliptical approximation shifted hyperbola, anelliptical rational approximations are presented for: phase velocity, group velocity and moveout nonhyperbolic in homogeneous VTI horizontally layered media. The validity of these approximations is made by calculating their relative errors by comparing with other known approximations in the literature. To semblance-based velocity analysis is performed to measure the accuracy of the rational moveout approximations to estimate parameters in VTI media. The results demonstrate the great potential of rational approximations in inverse problems. In order to adapt to VTI media, we modify two coherence measurements by semblance which are sensitive to amplitude and phase variations. The accuracy and robustness of the adapted coherence measurements are validated by estimation of in anisotropic parameters in VTI media.Item Acesso aberto (Open Access) Inversão de velocidades por otimização global usando a aproximação superfície de reflexão comum com afastamento finito(Universidade Federal do Pará, 2016-08-25) MESQUITA, Marcelo Jorge Luz; CRUZ, João Carlos Ribeiro; http://lattes.cnpq.br/8498743497664023The recent geophysical literature has shown the building of an accurate initial model is the more appropriate way to reduce the ill-posedness of the Full Waveform Inversion, providing the necessary convergence of the misfit function toward the global minimum. Optimized models are useful as initial guess for more sophisticated velocity inversion and migration methods. I developed an automatic P-wave velocity inversion methodology using pre-stack two-dimensional seismic data. The proposed inversion strategy is fully automatic, based on the semblance measurements and guided by the paraxial traveltime approximation, so-called Finite-Offset Common-Reflection-Surface. It is performed in two steps, at first using image rays and an a priori known initial velocity model we determine the reflector interfaces in depth from time migrated section. The generated depth macro-model is used as input at the second step, where the parametrization of the velocity model is made layer by layer. Each layer is separated from each other by smoothed interfaces. The inversion strategy is based on the scan of semblance measurements in each common-midpoint gather guided by the Finite-Offset Common-Reflection-Surface traveltime paraxial approximations. For beginning the inversion in the second step, the finite-offset common-midpoint central rays is built by ray tracing from the velocity macro-model obtained in the first step. By using the arithmetic mean of total semblance calculated from the whole common-midpoint gathers as objective function, layer after layer, a global optimization method called Very Fast Simulated Annealing algorithm is applied in order to obtain the convergence of the objective function toward the global maximum. By applying to synthetic and real data, I showed the robustness of the inversion algorithm for yielding an optimized P-wave velocity macro-model from pre-stack seismic data.Item Acesso aberto (Open Access) Migração 3-D Kirchhoff-Gaussian-Beam (KGB) pré-empilhamento no domínio da profundidade(Universidade Federal do Pará, 2013-06-24) PEREIRA, Glauco Lira; CRUZ, João Carlos Ribeiro; http://lattes.cnpq.br/8498743497664023The Gaussian Beam (GB) is an asymptotic solution of the elastodynamic equation in the paraxial vicinity of a central ray, which approaches better the wave field than the standard zero-order ray theory. The GB regularity in the description of the wave field, as well as its high accuracy in some singular regions of the propagation medium, provide a strong alternative to solve seismic modeling and imaging problems. In this thesis, i presenty a new procedure for pre-stack depth migration with true-amplitude, combining the flexibility and robustness of Kirchhoff migration type using superposition of Gaussian beams to represent the wave field. The proposed migration algorithm comprises in two stacking process: the first is the beam stack is applied to subsets of seismic data multiplied by a weight function defined such that stack operator has the same formulation of the integral of the Gaussian beams superposition; the second is a weighted diffraction stack by means of the Kirchhoff type integral having as input the GB stacked data. For these reasons it is called Kirchhoff-Gaussian-Beam (KGB) migration. The main characteristics that distinguish the KGB migration, during the first stage stacking, with other migration methods that also use the theory of Gaussian beams, is the use of the first Fresnel zone projected to limit the width of the subset of seismic traces (beam) using a second-order approximation of the reflection travel time. Examples are shown for applications on two-dimensional (2-D) and three-dimensional (3-D) synthetic seismic data, respectively, to the models Marmousi and SEG/EAGE salt dome data sets.Item Acesso aberto (Open Access) Migração em profundidade pré-empilhamento utilizando os atributos cinemáticos do empilhamento por superfície de reflexão comum(Universidade Federal do Pará, 2007-11-12) LUZ, Samuel Levi Freitas da; CRUZ, João Carlos Ribeiro; http://lattes.cnpq.br/8498743497664023The Common-Reflection-Surface (CRS) stack is a new seismic processing method for simulating zero-offset (ZO) and common-offset (CO) sections. It is based on a second-order hyperbolic paraxial approximation of reflection traveltimes in the vicinity of a central ray. For ZO section simulation the central ray is a normal ray, while for CO section simulation the central ray is a finite-offset ray. In addition to the ZO section, the CRS stack method also provides estimates of wavefield kinematic attributes useful for solving interval velocity inversion, geometrical spreading calculation, Fresnel zone estimate, and also diffraction events simulation. In this work, Its proposed a new strategy to do a pre-stack depth migration by using the CRS derived wavefield kinematic attributes, so-called CRS based pre-stack depth migration (CRS-PSDM) method. The CRS-PSDM method uses the CRS results (ZO section and kinematic attributes) to construct an optimized stack traveltime surface along which the amplitudes of the multi-coverage seismic data are to be summed and the result is put in a point of the migration target zone in depth. In the same sense as in Kirchhoff type pre-stack depth migration (K-PSDM), the CRSPSDM method needs a migration velocity model. Unlike the K-PSDM method, the CRS-PSDM needs only to calculate the zero-offset traveltimes, i.e, along only ray conecting the considered point in depth to a given coincident position of source-receptor at surface. The final result is a zero-offset time-to-depth converted seismic image of reflectors from pre-stack seismic data.Item Acesso aberto (Open Access) Migração Kirchhoff pré-empilhamento em profundidade modificada usando o operador de feixes gaussianos(Universidade Federal do Pará, 2007) FERREIRA, Carlos Augusto Sarmento; CRUZ, João Carlos Ribeiro; http://lattes.cnpq.br/8498743497664023The Gaussian Beam (GB) concept was introduced in the seismic literature by Russian and Czech researchers in the begining of the 80’s. This theory, which by its turn was based on the scalar electromagnetic diffraction theory, is in fact a (zero order) complex paraxial ray theory, designed to satisfactorilly describe the seismic wavefield propagation beyond the standard zero order ray theory, up to then the only theory used to describe the high frequency seismic wavefield propagation in smoothed velocity models. As an imaging tool, the first works to deal with GB’s were published in the end of the 80’s and in the begining of the 90’s. The regularity in the description of the wavefield by GB’ s, as well as its high accuracy in some singular regions of the velocity model, transformed the use of GB’s into a viable hybrid alternative in the migration theory. In this work, we unite the flexibility in imaging of the true amplitude prestack Kirchhoff depth migration with the regularity in the description of the wavefield by a superposition of GB’s. As a way of controlling in a very stable way some quantities used in the construction of the beams, we have made use of some informations based on the Fresnel volume elements, more especifically speaking the Fresnel zone radius around the reflection point in depth and its counterpart, projected towards the acquisition surface. This information is centred around the recording point of the seismogram and is also present in the seismic data reflection traveltime curves. Our migration process can be named a true amplitude prestack Kirchhoff depth migration using GB’s as Green function, namely KGB-PSDM.