Teses em Geofísica (Doutorado) - CPGF/IG
URI Permanente para esta coleçãohttps://repositorio.ufpa.br/handle/2011/2357
O Doutorado Acadêmico pertente a o Programa de Pós-Graduação em Geofísica (CPGF) do Instituto de Geociências (IG) da Universidade Federal do Pará (UFPA).
Navegar
Navegando Teses em Geofísica (Doutorado) - CPGF/IG por Data do documento
Agora exibindo 1 - 20 de 50
- Resultados por página
- Opções de Ordenação
Item Acesso aberto (Open Access) Paleomagnetismo de rochas vulvânicas do Nordeste do Brasil e a época da abertura do Oceano Atlântico Sul(Universidade Federal do Pará, 1983-12-28) GUERREIRO, Sonia Dias Cavalcanti; SCHULT, AxelIn the first part of this paper palaeomagnetic and rock magnetism investigations were developed in volcanic samples from the Northeast of Brasil. The age of the samples spans the Jurassic and Cretaceous periods. To accomplish this task four areas were studied and a total of 495 samples from 56 cites were analyzed. A portable drilling machine with 2.5 cm core diameter was used to collect the samples. The orientation of the samples were obtained by means of a magnetic compass, and a clinometer. The specimens were submitted to alternating field demagnetization and in, a few cases, to thermal demagnetization. Giving unit weight to each site the mean direction of the characteristic remanent magnetization of each one of the studied areas were determined. The volcanic rocks from Jurassic, lying in the western part of the Maranhão Basin (Porto Franco - Estreito) , yielded the mean direction: declination D=3.9º, inclination I=-17.9°, with the circle of 95% of confidence α95=9.3º, precision parameter k=17.9, number of sites N=15. All sites showed normal polarity. For this area was determined a palaeomagnetic pole with coordinates 85.3°N, 82.5°E (circle of 95% of confidence A95 = 6.9º) that is situated near other known palaeomagnetic poles for this period. The Lower Cretaceous rocks from the eastern part of the Maranhão Basin (Teresina-Picos-Floriano) yielded a mean direction for the characteristic remanent magnetization having D= 174.7º, I=6.0°, α95=2.8º, k=122, N=21. All sites showed reversed polarity. The calculated palaeomagnetic pole associated with these rocks has coordinates 83.6°N, 261.0ºE (A95= 1.9°) and is in agreement with other South American poles of the same age. In Rio Grande do Norte a swarm of Lower Cretaceous tholeiitic dikes was studied having a characteristic mean direction with D= 186.6º, I= 20.6º with α95= 14.0º, k= 12.9, and N= 10. The sites in this area showed mixed polarity. The computed palaeomagnetic pole is located at 80.6ºN and 94.8ºE with A95= 9.5º. The study of the volcanic rocks of the magmatic province of Cape Santo Agostinho yielded the following values for the characteristic remanent magnetization D= 0.4º, I=-20.6º with α95= 4.8º, k=114, N=9. All sites showed normal polarity and the calculated paleomagnetic pole has the coodinates: 87.6ºN 135ºE with A95= 4.5. The secular variation of the obtained directions was discussed so that each pole presented in this paper is really a palaeomagnetic pole. The analysis of the magnetic minerals of these samples was done by thermomagnetic curves and by X-ray diffraction. In most cases the magnetic phase in the rocks is mainly titanomagnetite with poor titanium content. Maghemite and sometimes hematite, usually a product of weathering, did not obscure the initial thermoremanent magnetization of these rocks. Generally the determined Curie temperature lies between 500-600º C. Frequently it was observed that the exsolved titanomagnetite has a phase near magnetite and another phase rich in titanium, near ilmenite, as a result of high temperature oxidation. The second part of this paper deals with the determination of the time of the opening of the South Atlantic ocean by means of palaeomagnetic data. In this paper, however, instead of using the polar wandering paths of the continents (the usual method) statistical tests were applied that give the probability that a certain configuration for the two continents be consistent or not with the palaeomagnetic data for a chosen period. For the Triassic, Jurassic, Lower Cretaceous and Middle-Upper Cretaceous periods the palaeomagnetic poles for Africa were compared with the respective poles of South America in pre-drift configuration by means of an F-test. Other configurations that indicate some separation between the two continents were also tested. The results of the tests showed that the pre-drift reconstruction after Martin et al (1981) is consistent with the palaeomagnetic data for Triassic, but there is a significant difference between the respective Jurassic, Lower Cretaceous and Middle-Upper Cretaceous palaeopoles for the two continents, with a probability of error of less than 5%. Other pre-drift reconstructions were tested and the results were the same. Comparing the pole positions for South America and Africa in a configuration that indicates a small separation between the two continents, as the one suggested by Sclater et al (1977) for 110 m.y.B.P. one finds a significant difference for the Triassic data. For the Jurassic and Lower Cretaceous palaeomagnetic poles, which are, however, earlier than the suggested date of the reconstruction, the results are consistent with that separation of the continents with a probability of error of less than 5%. The reconstruction for 80 m.y.B.P., after Francheteau (1973), indicanting a larger separation between the continents, is consistent with the Middle-Upper Cretaceous palaeomagnetic poles. Assuming the premise of the movements of crustal blocks relative to each other as rigid blocks, the results of the F-test indicated that South America and Africa were close together during Triassic. There was, nevertheless, a small separation between the continents in Jurassic, probably due to an earlier rifting event, and this separation was stationary until Lower Cretaceous time. This result is different from the most part of the papers that discuss the openning of the South Atlantic ocean. The Middle-Upper Cretaceous data are compatible with a fast and significant spreading of the continents in that period.Item Acesso aberto (Open Access) Geotermia rasa em Belém(Universidade Federal do Pará, 1987-12-15) ARAÚJO, Rutênio Luiz Castro de; SOUZA, José Ricardo Santos de; http://lattes.cnpq.br/2797414407717271A detailed study of shallow geothermics was carried out at depth intervals of 0.02 to 210.0 m, in the metropolitan área of the city of Belém-Brazil. The temperature measurements were performed by using mercury and thermistor thermometers, while the thermal conductivity measurements were made on core samples obtained from boreholes, by using a needle type apparatus. The incident solar radiation flux was recorded by a Robitzech type actinography. The average geothermal gradient obtained for the metropolitan area of the city of Belém was of 0.0254 ± 0.0007 °C.m-1. The average value of the thermal conductivity of the core samples collected in this region was of 1.66 ± 0.52 W.m-1.°C-1. On the other hand the average geothermal flux observed within the studied region was of about 42.16 ± 1.14 mW.m-2. At 1.0 m depth one observes changes of the temperature values with time which can not be neglected. These changes are directly related to the incident solar radiation flux variations at the surface. The largest increment of this flux observed from one day to the other was about 30 W.m-2, which corresponded to a temperature increment of the order of 0.22 °C at 1.0 m depth. The temperature profiles obtained in this work, presented drifts in alternating directions during the one-year cycle of observations. The shallow geothermal profiles are characterized by a zone of vanishing heat flux, so called “elbow zone”, past which the temperature increases with depth. The depth of the elbow zone is mainly influenced by the heat flux generated by the incident solar radiation on the surface of the area under study. A numerical model of the thermal structure evolution in time, was developed for the 0.02 to 10.0 m depth zone. The results generated from this model of heat transfer by conduction were compared with those obtained from the field work data. One observes good agreement between the two sets of data. However the numerical adjustment representation is closer to the field data in the period of September to February. The model developed can be used for of profile drifts geothermal forecasts, as long as one knows a priori the corresponding values of the monthly averages of the soil temperatures at the surface, the regional geothermal gradient and one given geothermal profile. This work demonstrates that the incident solar radiation flux at the surface is the main source of influence on the shallow geothermal profiles. The maximum depth of such influence depends mainly on the magnitude of such flux, on the degree of protection of the surface from the direct incidence of solar radiation and the lithology of the site under study.Item Acesso aberto (Open Access) Uma nova abordagem para interpretação de anomalias gravimétricas regionais e residuais aplicada ao estudo da organização crustal: exemplo da Região Norte do Piauí e Noroeste do Ceará(Universidade Federal do Pará, 1989-12-18) BELTRÃO, Jacira Felipe; HASUI, Yociteru; http://lattes.cnpq.br/3392176511494801; SILVA, João Batista Corrêa da; http://lattes.cnpq.br/1870725463184491Despite its great importance to the study of global geologic structures, interpreting gravity anomalies is not a trivial task because the observed gravity field is the resultant of every gravity effect produced by every elementary density contrast. Therefore, in order to isolate the effects produced by shallow sources from those produced by deep sources, I present a new method for regional-residual separation and methods for interpreting each isolated component. The regional-residual separation is perfomed by approximating the regional field by a polynomial fitted to the observed field by a robust method. This method is iterative and its starting value is the least-squares fitting. Also, the influence of observations containing substantial contributions of the residual field in the regional field fitting is minimized. The computed regional field is transformed into a map of vertical distances relative to a given datum. This transformation consists of two stages. The first one is the downward continuation of the regional field which is assumed to be produced by a smooth interface separating two homogeneous media: the crust and the mantle. The density contrast between the media is presumably known. The second stage consists in transforming the downward continued field into a map of vertical distances relative to a given datum by means of simple operations. This method presents two difficulties. The first one is related to the instability inherent to the downward continuation operation. The use of a stabilizer is therefore mandatory, leading to an inevitable loss of resolution of the features being mapped. The second difficulty, inherent to the gravity method, is the impossibility of determining the interface absolute depths. However, the knowledge of the absolute depth at one single point of the interface by independent means allows the computation of all absolute depths. The computed residual component is transformed into an apparent density map. This transformation consists in calculating the intensity of several prismatic sources by linear inversion, assuming that the real sources are confined to a horizontal slab and have density contrasts varying only along the horizontal directions. The performance of the regional-residual separation method was assessed in tests using synthetic data, always producing better results as compared either with polynomial fitting by least-squares or with the spectral analysis method. The method for interpreting the regional component was applied to synthetic data producing interfaces very close to the true ones. The limit of resolution of the features being mapped depend not only on the degree of the fitting polynomial, but also on the limitation imposed by the gravity method itself. In interpreting the residual component, a priori information is needed about the depth and thickness of the slab confining the true sources. However, results of tests using synthetic data showed that reasonable estimates for the h6rizontal limits of the sources can be obtained, even when the depth and thickness of the slab are not known. The ambiguity involving depth to the top, thickness and the apparent density can be visualized by means of curves of apparent density as a function of the presumed depth to the top of the slab, each curve corresponding to a particular assumed value for the slab thickness. An analysis of the configuration of the curves allows a semi-quantitative interpretation of the real sources depths. The sequence of all three methods described above was applied to gravity data from northern Piauí and northwestern Ceará state. As a result, a crustal organization model was obtained consisting of crustal thickenings and thinnings related to a compressive event which caused the raise of dense, lower crust rocks to shallower depths. This model is consistent with surface geological information. Also, the .gravity interpretation suggests the continuity of the Northwestern Ceará Shear Belt for more than 200 km under the Parnaíba Basin sedimentary cover. Although the sequence of methods presented here has been developed for the study of large scale crustal structures, it could also be applied to the interpretation of smaller structures, as, for example, the basement relief of a sedimentary basin where the sediments have been intruded by mafic rocks.Item Acesso aberto (Open Access) Interpolação de dados de campo potencial através da camada equivalente(Universidade Federal do Pará, 1992-09-15) MENDONÇA, Carlos Alberto; SILVA, João Batista Corrêa da; http://lattes.cnpq.br/1870725463184491The equivalent layer technique is an useful tool to incorporate (in the process of interpolation of potential field data) the constraint that the anomaly is a harmonic function. However, this technique can be applied only in surveys with small number of data points because it demands the solution of a least-squares problem involving a linear system whose order is the number of data. In order to make feasible the application of the equivalent layer technique to surveys with large data sets we developed the concept of equivalent data and the EGTG method. Basically, the equivalent data principle consists in selecting a subset of the data such that the least-squares fitting obtained using only this selected subset will also fit all the remaining data within a threshold value. The selected data will be called equivalent data and the remaining data, redundant data. This is equivalent to splitting the original linear systems in two sub-systems. The first one related with the equivalent data and, the second one, with the redundant data in such way that, the least-squares solution obtained by the first one, will reproduce all the redundant data. This procedure enables fitting all the measured data using only the equivalent data (and not the entire data set) reducing, in this way, the amount of operations and the demand of computer memory. The EGTG method optimizes the evaluation of dot products in solving least-squares problems. First, the dot product is identified as being a discrete integration of a known analytic integral. Then, the evaluation of the discrete integral is approximated by the evaluation of the analytic integral. This method should be applied when the evaluation of analytic integral needs less computational efforts than the discrete integration. To determine the equivalent data we developed two algorithms namely DOE and DOEg. The first one identifies the equivalent data of the whole linear systems while the second algorithm identifies the equivalent data in sub-systems of the entire linear systems. Each DOEg's iteration consists of one application of the DOE algorithm in a given subsystem. The algorithm DOE yields an interpolating surface that fits all data points allowing a global interpolation. On the other hand, the algorithm DOEg optimizes the local interpolation because it employs only the equivalent data while the other current algorithms for local interpolation employ all data. The interpolation methods using the equivalent layer technique was comparatively tested with the minimum curvature method by using synthetic data produced by prismatic source model. The interpolated values were compared with the true values evaluated from the source model. In all tests, the equivalent layer method had a better performance than the minimum curvature method. Particularly, in the case of bad sampled anomaly, the minimum curvature method does not recover the anomalies at the points where the anomaly presents high curvature. For data acquired at different levels, the minimum curvature method presented the worse performance while the equivalent layer produced very good results. By applying the DOE algorithm, it was possible to fit, using an equivalent layer model, 3137 gravity free-air data and 4941 total field anomaly data from the marine Equant-2 Project and the aeromagnetic Carauari-Norte Project, respectively. The DOEg algorithm was also applied in the same data sets optimizing the local interpolation. It is important to stress that none of these applications would have been possible without the concept of equivalent data. The ratio between CPU times (executing the programs with the same memory allocation) required by the minimum curvature method and the equivalent layer method in global interpolation was 1:31. This ratio was 1:1 in local interpolation.Item Acesso aberto (Open Access) Modelagem numérica da influência do eletrojato equatorial em dados magnetotelúricos produzidos por estruturas tridimensionais(Universidade Federal do Pará, 1993-02-05) GONZÁLEZ CARRASQUILLA, Antonio Abel; RIJO, Luiz; http://lattes.cnpq.br/3148365912720676South America presents several unique geomagnetic features, one of which is the Equatorial Electrojet, a current system which extends east - west in Northern Brazil, for almost 3500 km. Considering the fact that the influence of the Equatorial Electrojet can be detected at great distances from its central axis, it is important to understand its effects on magnetotelluric exploration in Brazil. In magnetotelluric prospecting, the influence of the equatorial electrojet has been modelled for both one and two - dimensional geological media, employing both analytical and numerical techniques solutions such as finite element and finite difference. Three-dimensional geological media have been modeled by "thin – layers "using a "thin sheet" algorithm. Lines of current, gaussian electrojets and undulatory electrojets have been used as induction sources to simulate the equatorial electrojet in these algorithms. In this thesis the principal objective is to model the effects of the equatorial electrojet on three - dimensional structures commonly found in geophysical prospecting. To accomplish this, we have computed numerical solutions of the integral equation for three - dimensional media using the inductive sources mentioned before. As previous works have indicated, our results also show that the influence of the equatorial electrojet is prominant only for frequencies lower than 10-1 Hz. This influence decreases with distance but is detectable up to as far as 3000 km from the center of the electrojet. Thus, the presence of peaks in the apparent resistivity profiles over a homogeneous half - space indicates that the influence of the electrojet is more noticeable for this kind of medium. These peaks display different amplitudes for each type of simulated electrojet, and the peak locations also change from one electrojet to the other. However, when we use more geologically realistic one - dimensional models such as a stratified media, the effect of the electrojet source diminishes considerably and the results do not vary greatly for the different kinds of electrojet employed in the model. This effect is caused by the electromagnetic energy dissipation due to the presence of stratified conductive layers within the media. Within the 3000 km region, the three - dimensional electromagnetic response can be larger or smaller than the plane wave response, depending on location body, frequency, kind of the electrojet and geology. When the apparent resistivity is larger than the plane wave response, there is a spread between the one and the three-dimensional sounding curves caused by the electrojet, as well as a widening of the profile anomaly caused by the three - dimensional inhomogeneities relative to the one due to a plane wave. When the apparent resistivity is less the two kinds of sources yield anomalies approximately equal as well as a shortening of the profile anomaly. On the other hand, the phase usually shows an inverted way related to the apparent resistivity. This means that when one phase goes up the apparent resistivity goes down, and vice - versa. Similarily at high frequencies, the one and three - dimensional phases are offset, while at low frequencies they are the same, except for the undulating electrojet with undulation factor α = -2 and -3. Our results also show that the geometric characteristics of three-dimensional structures, such as their orientation relative to the direction of the electrojet and the dimensions of their principal direction, change the response due to the electrojet source as compared to a plane wave source. For example, when the three - dimensional structure is rotated 90 degrees, relative to the direction of the electrojet, there is a change in polarization (of the electric and magnetic fields) but there are no changes in the values of apparent resistivity at the center of symmetry of the structure. When the measurements are taken away from the center of symmetry changes in the apparent resistivity are shown when compared with the unrotated structure. This is due to the persistente of the galvanic effects at the center of the structure and the presence of inductive effects at the periphery of the three - dimensional body. When we elongate the principal direction of the three - dimensional structure, the magnetotelluric soundings start to approach those of two-dimensional structures. This is more noticiable in the XY polarization. Even so, the responses of the models tested are still quite different from the responses of the quasi two - dimensional structures. Nevertheless, the effects of the electrojet in structures with elongated principal direction are very similar to those present in smaller structures, considering the differences between the soundings of both kinds of structures. On the other hand, the apparent resistivities of this kind of elongated structures show a great increase at the edges of these structures, both for the plane wave or electrojet sources. This effect is caused by the chanelling of the current along the main direction of the structure. The modelling of gelogical structures in the Marajó Basin, confirms that the effects of the electrojet can be detected even in small horst and graben structures located at great distances from electrojet center. Electrojet effects are noticeable in both one and three - dimensional media for two frequency bands, one near 10-1 Hz and another band, between 10-3 Hz to DC. This possibly reflects the influence of a resistive geological basement and a resistive lower crust, respectively. The results of the analysis, using the electrojet as an inductive source show that at low frequencies the computed responses from the magnetotelluric soundings can be strongly distorted, both by galvanic effects in the three - dimensional structure as well as the presence of the electrojet. Therefore, if the equatorial electrojet effects are not accounted for, a misleading interpretation magnetotelluric data will result. Similarily, a three - dimensional model should be used to interpret the data, instead of one-dimensional Tikhonov-Cagniard model.Item Acesso aberto (Open Access) Simulação de perfis nucleares de poço em formações complexas(Universidade Federal do Pará, 1993-04-26) SILVA, Jadir da Conceição da; EVANS, Hilton BernardThe identification and description of lithological parameters of a formation are essential in the evaluation of complex formations. Based on this, the combination of the nuclear tool response in uncased wells has been used systematically. The resultant logs can be considered as the interaction between two distinct phases: • The radiation transport phase from a source to one or more detectors through the formation. • The detection phase that consists of the collection of radiation, its transformation into current pulses, and the spectral distribuition of these pulses. As the presence of the detector does not strongly affect the radiation transport result, each phase can be simulated independent of the other, which allows us to introduce a new type of model in which the transport phase and the detection phase are uncoupled. In this work, the final response is simulated combining transport numerical solutions with a library of the detector responses to different incident energies and for each specific source - detector array. The radiation is calculated by the Finite Elements Method (FEM), as a 2½-D scalar flux derived from the numerical solution of the multigroup diffusion approximation of the Boltzmann transport equation in phase space. This is known as P1 approximation, where the variable direction is expanded in terms of the Legendre orthogonal polymonials, leading to the dimensionality reduction of the problem in such a way as to let it be more consistent with the FEM, where the flux depends only on the spatial variable and the physical properties of the formation. The NaI(Tl) response function is obtained separately by the Monte Carlo method (MC) where the life of a particle within the scintillator crystal is reconstructed simulating interaction by interaction the position, direction and energy of the different particles using a random number technique with associated appropriate probabilities laws. Each type of interaction (e.g., Rayleigh, Photo-electric, Compton and Pair production) is determined similarly and the simulation is concluded when the detector response functions are convolved with the scalar flux. The final response is the pulse-height spectrum of the simulated system. From this spectrum, a set of channels called detection windows are then selected. The count rates in each window show different dependencies on density and lithology. This fact allows one to use a combination of these windows in determining the density and photoelectric absorption factor of the formation. According to the method developed in this work, the logs in both thin and thick layers can be simulated. The performance of the method has been tested in complex formations, mainly where the presence of clay minerals, feldspars and micas have produced considerable effects sufficient to perturb the final response of the sonde. The results show that it is possible to identify physical and lithological parameters in formations having densities between 1.8 and 4.0 g/cm3 and photoelectric absorption factors in the interval of 1.5 to 5.0 barns/e-. The concentrations of Potassium, Uranium and Thorium can be obtained through the introduction of a new system of calibration which corrects the effects due to high variances and negative correlations observed on the mass concentration of Uranium and Potassium. In the simulation of the CNL response using the Tittle polynomial regression algorithm, it is verified that due to the limited vertical resolution of this sonde, the porosity value is poorly measured for most layers of thickness less than the source - far detector spacing, thus it has application only in thick layers. A new method was developed to solve this problem; the contribution of the relative area of each layer within the maximum information zone is determined. Thus, this neutron porosity makes possible an in-depth evaluation of expected CNL porosity-lithology response, convolving that area factor with the local formation porosity index, considering only thick layers. The presence of perturbating minerals is solved by considering the formation as formed by a predominant base matrix mineral, totally saturated by fresh water; the rest of the components are then considered as a perturbation of this base case. These results enable the calculation of synthetic well logs that can be used in inversion schemes in order to get a more detailed quantitative evaluation of complex formations.Item Acesso aberto (Open Access) Inversão de momentos de fonte em métodos potenciais(Universidade Federal do Pará, 1993-08-16) MEDEIROS, Walter Eugênio de; SILVA, João Batista Corrêa da; http://lattes.cnpq.br/1870725463184491The inversion of three-dimensional gravity source moments is analyzed in two situations. In the first one only the anomalous field is assumed to be known. In the second situation a priori information about the anomalous body is assumed to be known besides the field data. Without using a priori information, we show that it is possible to determine uniquely any moment, or linear combination of moments, whose polynomial kernel: (a) is not a function of the Cartesian coordinate which is orthogonal to the measuring plane and (b) has null Laplacian. Besides, we show that it is impossible to determine any moment whose polynomial kernel has non-null Laplacian. On the other hand, we show that a priori information is implicitly introduced if the source moment inversion method is based on the approximation of the anomalous field by the truncated series obtained from its multipole expansion. Given any center of expansion, the series truncation impores a regularization condition on the equipotential surfaces of the anomalous body that allows the moments and linear combination of moments (which are the coefficients of the multipole expansion basis function) to be uniquely estimated. So, a mass distribution equivalent to the real mass distribution is postulated, being the equivalence criterion specified by the fitting conditions between the observed anomaly and the anomaly calculated with the truncated multipole expansion series. The highest order for the retained terms in the truncated series is specified by the previously defined maximum order for the moments. The moments of the equivalent mass distribution were identified as the stationary solution of a system of first order linear differential equations, for which uniqueness and assymptotic stability are assured. For the series having moments up to 2nd order, it is implicitly assumed that the anomalous body: (1) has finite volume, (2) that it is sufficiently far from the measuring plane and (3) that its spatial naass distribution is convex and presents three orthogonal planes of symmetry. The source moment inversion method based on the approximation of the anomalous field by a truncated series (MIT) is adapted to the magnetic case. In this case, we show that in order to guarantee uniqueness and assymptotic stability it is sufficient to assume, besides the regularization condition, that the total magnetization has constant but unknown direction. The MIT method based on the 2nd order series (MIT2) is applied to three-dimensional synthetic gravity and magnetic anomalies. If the source satisfies all imposed conditions, we show that it is possible to obtain in a stable way good estimates of the total anomalous mass or dipole moment vector, of the position of center of mass or dipole moment and of the directions of all three principal axes. A partia' failure of MIT2 method may occur either if the source is dose to the measuring plane or if the anomaly presents a localized but strong effect due to a shallow and small body and an attempt is made to estimate the moments of a large and deep body. By partial failure we mean the situation when some of the estimates may be poor aproximations of the true values. In these two cases we show that the estimates of the depth and the directions of the principal axes of the (main) source may be poor but the estimates of the total anomalous mass or dipole moment vector and the projection on the measuring plane of the center of mass or dipole moment of the source are good. If the total magnetization direction is not constant, MIT2 method may produce poor estimates of the directions of the principal axes (even if the source is far from the measuring plane) but good estimates are obtained for the other parameters. A complete failure of MIT2 method may occur if the source does not have finite volume. By complete failure we mean the situation when any obtained estimate may be a poor aproximation of the true value. MIT2 method is applied to real gravity and magnetic data. In the gravimetric case we used an anomaly located in Bahia state, Brazil, which is assumed to be produced by the presence of a large granitic body. Based on the inversion results, we propose that the grafite was deformed into an oblate ellipsoid during the compressive event that generated the Middle Proterozoic Espinhaço orogeny. The center of mass estimated for this body is about 20 km. In the magnetic case, we used an anomaly produced by a seamount located in the Gulf of Guinea. Based on the inversion results, we estimate a magnetic palaeopole for the seamount at 50°48'S and 74°54'E and we suggest that no important magnetization contrast exists below the bottom of the seamount.Item Acesso aberto (Open Access) Modelagem sísmica e inversão na presença de anisotropia(Universidade Federal do Pará, 1993-11-04) COSTA, Jessé Carvalho; SCHOENBERG, MichaelThe assumption of anisotropic elastic models, in the context of exploration seismology, has been increasing since the advent of new aquisition tecniques: VSP, walkway VSP, crosshole tomography and large offset seismic surveys. Effective anisotropic elastic models can account for patterns of inhomogeneities at a scale much lower than the wavelength of the propagating seismic energy. Particularly, effective media can account for the most robust seismic data, i.e., traveltime measurements. This work investigates some aspects of wave propagation, raytracing and traveltime inversion in anisotropic media. The propagation of SH waves in a layered anisotropic medium in the most general case where these waves can occur, i.e., propagation in the mirror symmetry plane of a monoclinic medium, is studied. It is shown that SH reflected field from a stratified half-space is 'blind' to the possible anisotropy below. Fast ray tracing procedures for stratified anisotropic media in 3D are presented. Such ray tracing codes are a first step towards the development of traveltime inversion algorithms for non-flat anisotropic layers in 3D. Traveltime inversion of VSP and walkway VSP is a promissing approach to 3D velocity model building, starting from a well location. These velocity models are necessary for the migration of seismic data in the presence of anisotropy. The analysis of the nonlinear tomographic inversion, for a vertically inhomogeneous transversally isotropic medium with vertical axis of symmetry (TIV), is presented. The limitations of qP traveltime data are pointed as well as the consequences of the lack of full angular ray coverage for tomographic inversion. An algorithm for tomographic inversion is presented and evaluated in synthetic data seis. Application to real data is presented. This approach is attractive for cases where the formations are known a priori to be relatively flat, and where crosswell data itself shows a high degree of left-right symmetry. It also may be of use for preliminary surveys, where the layered estimate can be used as a background model to carry out more detailed analysis, e.g., as an anisotropic velocity model for migration, or as a calibration model for AVO analysis.Item Acesso aberto (Open Access) Espalhamento elástico em meios anisotrópicos estratificados(Universidade Federal do Pará, 1994-06-09) PROTÁZIO, João dos Santos; SCHOENBERG, MichaelAVO analysis is an importante tool for extracting lithological information from seismic data using the contrast in acoustic impedance at the lithological boundaries. The isotropic assumption behind this analysis does not hold in many cases. The advent of large offset surveys and multi-component data has revealed the presence of subsurface anisotropy. To interpret such data, the AVO analysis must include anisotropy. This work presents an AVO theory and numerical results for an anisotropic layered medium. This thesis contains three contributions. First, a new approach to the study of reflection-transmission at a plane interface between anisotropic media with a horizontal mirror plane is presented. The Zoeppritz equations are generalized to include anisotropy by the introduction of impedance matrices which greatly simplifies the previous formalisms. Second, the study of the P-wave reflection at an interface between an isotropic and a transversally isotropic medium is described and it is show that the reflected P-wave does not have information about the underlying anisotropic subspace for pre-critical incidence. Finally, the behavior of post-critical reflected and transmitted pulses through a stack of anisotropic layers is discussed. The post-critical pulses are show to carry valuable information on the anisotropy of the structure through which the waves propagate.Item Acesso aberto (Open Access) Região do espaço que mais influencia em medidas eletromagnéticas no domínio da frequência: caso de uma linha de corrente sobre um semi-espaço condutor(Universidade Federal do Pará, 1994-07-28) BRITO, Licurgo Peixoto de; DIAS, Carlos Alberto; http://lattes.cnpq.br/9204009150155131One of the major interpretation problems in geophysics is to determine the region in the subsurface which generates the main part of the signal. In this thesis, the position and size of this region, hereinafter called the main zone, have been found by modelling an electromagnetic system in which the source is an infinite line of electric current, extended over a conductive half-space. The earth has been modelled as a conductive half-space with an inhomogeneity in it as being an infinite layer or a prism of infinite length in the direction of the source line. The signal in the receiver of an electromagnetic system over a conductive homogeneous half-space is different from the one taken over the half space including an inhomogeneity. This difference is a function of the position of the inhomogeneity in relation to the transmiter-receiver system, besides other parameters. Therefore, with the other parameters fixed, there will be a specific position where this difference will maximize. Since this position depends on conductivity contrast, inhomogeneity dimensions and on source frequency, instead of a single position one will have a region where the inhomogeneity will give the maximum contribution to the measured signal. This region is called the main zone. Once the main zone is identified, the targets in the subsurface can be more precisely located. Usually they are conductive parts of the earth with some specific interest. One can facilitate the exploration and reduce production costs if these conductors are well identified during prospecting. A detectability function (∆) has been defined to measure the contribution to the signal due to the inhomogeneity. The ∆ function has been computed using amplitude and phase of the magnetic field components: Hx and Hz which are, respectively, the tangential and the normal to the earth's surface. The size and position of the main zone has been identified using the extremais of the ∆ function, which change with conductivity contrast, and the inhomogeneities' size and depth. Electromagnetic fields for one-dimensional models were calculated using a hybrid form, numerically solving the integrals that were obtained analytically. Two-dimensional models were computed numerically, by the finite elements technique. The maximum values of ∆ function, computed with amplitude of Hx, have been chosen to locate the main zone. This shows more stable results than other amplitude and phase components, both for one and two-dimensional models, when physical properties and geometric dimensions are changed. For the one-dimensional model, where the inhomogeneity is an infinitely extended horizontal layer, the depth of its central plane was found to be po = 0.17 δo, where po is the depth of this central plane and δo is the skin depth for the plane wave (in an homogeneous half-space having a conductivity σ1 equal to that of the backgound, and the frequency w corresponding to the maximum value of ∆ calculatede for the amplitude of Hx). For two-dimensional inhomogeneities, the co-ordinates of the main zone central axis was found to be do = 0,77 r0 (where do is the horizontal distance from this axis to the source) and po = 0,36 δo (where po is the depth of this central axis), with r0 being the source-receiver separation and δo the skin depth in the same conditions as in the one-dimensional case. If the values of r0 and δo are known, it is possible to determine (do, po). Associating each value of ∆ function (calculated using the amplitude of Hx) with the values of d = 0,77 r and p = 0,36 δ for each r and w used to generate ∆, a method to locate the main zone is sugested. The isovalue curves of ∆ are plotted to construct sections of ∆. These sections indicate the conductors position and provide some helpful insight into their geometric forms when the values of ∆ get dose to the maximum.Item Acesso aberto (Open Access) Imageamento homeomórfico de refletores sísmicos(Universidade Federal do Pará, 1994-10-06) CRUZ, João Carlos Ribeiro; HUBRAL, Peter; http://lattes.cnpq.br/7703430139551941This thesis presents a new technique for seismic stacking called homeomorphic imaging, which is applicable to the imaging of seismic reflectors in a bidimensional, inhomogeneous and isotropic medium. This new technique is based on ray geometrical approximation and topological properties of reflection surfaces. For this purpose the concepts of wavefront, incidence angle, radius and caustic of wavefront and ray trajetory are used. Considering a circle as the geometrical approximation of the wavefront in propagation, it is possible to define diferent homeomorphic imaging methods, depending on processing configuration. In this way, the following methods are possible: 1) Common Source (Receiver) Element (CS(R)E), which relate to a set of seismograms with a single source (receiver) and a real reflected wavefront is considered; 2) Common-Reflecting-Element (CRE), which relate to a set of seismograms with a single reflection point and a wavefront hipotetically generated in the same reflection point is considered; 3) Common Evolute Element (CEE), which relate to a set of seismograms with each pair of source and geophone located in the same point on the seismic line and a wavefront hipothetically generated in the curvature center of the reflector is considered. In the first method is obtained a stacked seismic section using arbitrary central rays. In the last two methods the result is a zero-offset seismic section. These methods give also other two sections called radiusgram and anglegram, the latter being emergence angles and the former radii of wavefront in the moment that it reaches the observational surface. The seismic stacking is made using a local correction-time applied to the travel time of a ray that leaves the source, and after reflection, is registered as a primary reflection at a geophone, in relation to the reference time which is the travel time of the central ray. The formula used for the temporal correction depends on the radius, the emergence angle of the wavefront and the velocity which is considered constant near the seismic line. It is possible to show that in this new technique the registered signal is not submitted to stretch effects as a consequence of the temporal correction, furthermore there is no problem with reflector point dispersal as a consequence of dip reflectors, in contrast with the techniques that are based on NMO/DMO. In addition, considering that no a prori knowledge of a macromodel is necessary but the velocity near the seismic line, the homeomorphic imaging can be applied to inhomogeneous models without losing the strictness of the formulation.Item Acesso aberto (Open Access) Modelo fractal para resistividade complexa de rochas: interpretação petrofísica e aplicação à exploração geoelétrica(Universidade Federal do Pará, 1995-12-21) ROCHA, Brígida Ramati Pereira da; HABASHY, Tarek MohamedRocks containing disseminated metallics or clay particles in natural environment where electrolytic solutions fill the pore spaces, show a certain type of polarization at low frequencies known as induced electrical polarization. In this thesis, a new model to describe the electrical polarization on rocks was developed, not only for low frequencies, but spanning the entire electromagnetic spectrum used in geolectric prospection. This new model encompasses most of the other commonly used models as special cases, and overcomes some of the known limitations. The proposed circuit analog includes a non-linear impedance r(iwtf)-1 which simulates the effects of the rough surface of the interfaces between the blocking grains (metallic or clay particles) and the electrolyte. This generalized Warburg impedance is in series with the resistance of the blocking grains and both are shunted by the double layer capacitance. This combination is in series with the resistance of the electrolyte in the blocked pore passages. The unblocked pore paths are represented by a. resistance which corresponds to the normal DC resistivity of the rock. The parallel combination of this resistance with the "bulk" sample capacitance is finally connected in parallel to the rest of the above-mentioned circuit. The parameters of this model include the DC resistivity (p0), the chargeability (m), three relaxation times (T, Tf and T0), a grain resistivity factor (δr) and the frequency exponent (η). The fractal relaxation time (Tf) and the frequency exponent (η) are related to the fractal geometry of the rough pore interfaces between the conductive grains (metallic or clay minerals which are blocking the pore paths) and the electrolyte. The relaxation time T is a result of the low-frequency relaxation of the electrical double layers formed between the electrolyte and the crystals, whereas T0 is a macroscopic relaxation time of the "bulk" sample. The grain resistivity factor (δr) relates the resistivity of the conductive grains with the DC resistivity value of the rock. The DC resistivity of the rock and δr are related to the porosity, the electrolyte conductivity and the volumetric ratios between the matrix and the conductive grains. The model was tested over a wide range of frequencies against experimental data obtained for amplitude and phase of resistivity or conductivity as well as for the complex dielectric constant. The data used in this work were obtained from digitizing published experimental data, obtained by several authors from sedimentary, metamorphic and igneous rocks. The results show that the parameters of this model are related to textural and mineralogical aspects of the rocks. This model was introduced firstly as the intrinsic electric property of a homogeneous and polarizable half-space, and it was demonstrated, in this thesis, that the response observed at the surface is equivalent to the intrinsic property of the polarizable medium, been the electromagnetic coupling irrelevant to frequencies lower than 104 Hz. Next, the polarizable medium was embedded as an intermediate layer between two non-polarizable layers with the same De resistivity. The response obtained shows that the frequency exponent of the fractal medium could be determined even when the polarizable medium is at a considerable depth in relation to the dipole-dipole length. This justifies the use of simple models developed to explain the response of laboratory samples to fit field data, and that is being used without a right justification. These results shows the importance of the proposed model to the geoelectric prospection.Item Acesso aberto (Open Access) Inversão de dados de ondas de superfície Rayleigh(Universidade Federal do Pará, 1996-02-26) SANTA ROSA, Antonio Nuno de Castro; ROSA, João Willy Corrêa; http://lattes.cnpq.br/3486252051195441We have compiled a large set of group velocity measurements for fundamental mode Rayleigh waves with period smaller than 100 seconds. These data are composed of worldwide information gathered from the geophysical literature. Part of the data was compiled in previous works, and a second part of these data was measured in this thesis. For the South American plate, we have selected the main sets of measurements for such waves and gathered them in several profiles, for which the depth distribution of the shear wave velocity was determined from the inversion of the group velocity dispersion curves. These depth profiles were useful to have an idea of the internal structure of the Earth underneath the South American plate. Using the global group velocity data set, it was possible to determine the maps showing the lateral variation of group velocity for reference period values ranging from 20 to 100 seconds. These maps were produced in the same way that ROSA (1986) used to generate the corresponding phase velocity maps, using blocks measuring 10x10 degrees around the earth and considering the mercator projection. The group velocity value at each block was obtained, for each reference period value, from the stochastic inversion of the travel time delays from the JORDAN (1981) each model, considering the average group velocity values determined by ROSA et al. (1992) for this model. The group velocity maps obtained here were then jointly used with the phase velocity values determined by ROSA (1986) for the determination of the earth’s internal distribution of shear wave velocity as well as the density distribution, from the depth inversion of both phase and group velocity dispersion curves. The results enabled us to construct the first map showing the possible depth of the Moho discontinuity (upper mantle depth) for South America.Item Acesso aberto (Open Access) Aplicação de redes neuronais artificiais ao tratamento e interpretação de perfis geofísicos de poço aberto(Universidade Federal do Pará, 1997-02-13) ANDRADE, André José Neves; LUTHI, Stefan MoritzThe analysis of openhole wireline logs is of great importance for the subsurface mapping of geological layers and the identification and quantification of hydrocarbon and mineral deposits. An importants aspects are the determination of geological boundaries, the mineralogical identification and the well-to-well correlation, which can be a tedious and time-consuming task for the geologist. Automating this procedure is complicated but potentially rewarding because it may save the production geologist and log analyst substantial amounts of time. Artificial neural networks have been shown to handle this task efficiently including in cases where sequential algorithms have problems. We show in this thesis that neural networks can be used to determine layer boundaries, the mineralogical identification and the well-to-well correlation, on well logs, and we present the new networks archtectures. These procedures are tested on synthetic as well as actual field data.Item Acesso aberto (Open Access) Determinação das velocidades intervalares usando a teoria paraxial do raio: aproximação de segunda ordem dos tempos de trânsito(Universidade Federal do Pará, 1998) MONTES VIDES, Luis Alfredo; SÖLLNER, Walter FranzIn this work a method was developed to solve the inverse seismic problem in models consisting of isotropic and homogeneous layers separated by smooth interfaces, which determines the interval velocities in depth and calculates the geometry of the interfaces. The traveltime is expressed by a function with parameters referred to a coordinated system fixed at the central ray, and numerically estimated at the superior surface of the model in the vicinity of the normal ray. The function is later recalculated at the anterior interface limiting the unknown layer, through a process which determines the characteristic function in depth. The characteristic function of the traveltimes evaluated at the anterior interface allows to know the interval velocity of the layer and the geometry of the posterior interface where the normal reflection takes place. The procedure is repeated recursively at deeper layers getting the complete solution without a priori knowledge but the upper determined layers. Computer’s programs expressing the algorithm of the method were developed and tested with synthetic seismic data, generated through models with structural factions very common in geological sections, obtaining the interval velocities in depth with considered acceptable errors and reconstructing the interfaces. A sensibility analysis was done in order to verify the stability of the two methods. The empirical range of applicability of hyperbolic dynamic corrections was taken for the range of applicability of the developed method.Item Acesso aberto (Open Access) Mapeamento do relevo do embasamento de bacias sedimentares através da inversão gravimétrica vinculada(Universidade Federal do Pará, 1998-03-02) BARBOSA, Valéria Cristina Ferreira; MEDEIROS, Walter Eugênio de; http://lattes.cnpq.br/2170299963939072; SILVA, João Batista Corrêa da; http://lattes.cnpq.br/1870725463184491We present three new stable gravity inversion methods to estimate the relief of an interface separating two media. Solution stability is attained by introducing a priori information about the interface, through the minimization of one (or more) stabilizing functional. These methods are, therefore, characterized by the physical and geological information incorporated to the problem. The first method, named global smoothness, estimates the depths to the interface at discrete points by assuming that the density contrast between the media is known. To stabilize the inverse problem, we introduce two different constraints: (a) proximity between the true and estimated interface depths at a few isolated points, and (b) proximity between the estimated depths at adjacent points. The combination of these two constraints impose a uniform degree of smoothness all over the estimated interface, minimizing, simultaneously, the misfit between the known and estimated depths at a few boreholes, for example. The second method, named weighted smoothness, estimates the interface depths at discrete points, assuming that the density contrast is known a priori. In this method, it is incorporated the information that the interface is smooth almost everywhere, but at a few fault discontinuities. To incorporate this attribute to the estimated relief, we developed an iterative process where three kinds of constraints are imposed on parameters: (a) weighted smoothness between values of adjacent parameters, (b) lower and upper bounds on the estimated depths, and (c) proximity between the values of the parameters and a known numerical value. Starting with an initial solution produced by the global smoothness method, this method enhances initially estimated geometric features of the interface; that is, flat areas will tend to become flatter and steep areas will tend to become steeper. This is accomplished by weighting the constraints which require proximity between adjacent parameters. The weights are updated at each iteration so as to enhance the discontinuities detected in a subtle way by the global smoothness method. Constraints (b) and (c) are used both to compensate for the decrease in solution stability due to the introduction of small weights, and to reinforce flatness at the basin bottom. Constraint (b) imposes that any depth be nonnegative and smaller than an a priori known maximum depth value whereas constraint (c) imposes that all depths be closest to a value deliberately violating the maximum depth. The trade-off between these conflicting constraints is attained with a final relief presenting fiat bottom and steep borders. The third method, named minimum moment of inertia, estimates the density contrasts of a subsurface region discretized into elementary prismatic cells. It incorporates the geological information that the interface to be mapped encompasses an anomalous source which besides presenting horizontal extents much larger than its largest vertical extent, exhibits bordes dipping either vertically or toward the center of mass, and that most of the anomalous mass (or mass deficiency) is concentrated, in a compact way, about a reference level. Conceptually, these information are introduced through the minimization of the moment of inertia of the anomalous sources with respect to a reference level coinciding with the mean topographic surface. This minimization is performed in a subspace of parameters consisting of compact sources and presenting bordes which dip either vertically or toward the ce4ter of mass. Effectivelly, these informations are introduced by means of an iterative process starting with a tentative solution dose to the null solution, and adds, at each iteration, a contribution which has minimum moment of inertia with respect to the reference level, in such a way that the estimate of the next iteration does not violate the bounds on the density contrast and minimizes, at the same time, the misfit between the observed and the fitted data. Additionally, the iterative process "freezes" a density estimate if it becomes very dose to either bound. The final solution at the end of the iterative process is an estimated solution exhibiting a compact mass distribution concentrated about the reference level, whose density contrast distribution is dose to the upper (in absolute value) bound established a priori. All three methods were applied to synthetic and field gravity data, produced, respectively, by simulated and real sedimentary basins. The global smoothness method produced a good reconstruction of the basin structural framework even when the true basements were not globally smooth, as was the case of the Recôncavo Basin, Brazil. This method presents, however, the lowest resolution as compared with the other two methods. The weighted smoothness method improved the resolution of basements presenting disontinuities produced by gravity faults with large vertical offsets. It is, therefore, potentially useful in interpreting the structural framework of extensional basins as illustrated both with synthetic data and data from the Steptoe Valley, Nevada, USA and from Recôncavo Basin, Brazil. The minimum moment of inertia method was also applied to synthetic data and data from Recôncavo Basin and from San Jacinto Graben, California, USA. The results showed that, as compared with the other two methods, this method produces excellent estimates of a basement relief consisting of several adjacent discontinuities with small vertical offsets. This is a remarkable advantage over the weighted smoothness method which requires that the interface present few, local discontinuities with large vertical offsets.Item Acesso aberto (Open Access) Inversão vinculada de dados de EMAP e MT-1D anisotrópico(Universidade Federal do Pará, 1999-11-26) RÉGIS, Cícero Roberto Teixeira; RIJO, Luiz; http://lattes.cnpq.br/3148365912720676We present a technique to invert magnetotelluric data. Two kinds of MT data are treated: data generated by anisotropic one-dimensional models and two-dimensional data from EMAP (ElectroMagnetic Array Profiling) surveys. In both cases we perform the inversions using approximate equality constraints to stabilize the solutions. We show the advantages and the limitations of those constraints in the inversion process. Even when the inversion is constrained, it can still be unstable. To invert the two-dimensional EMAP data we present a process that consists of three steps: 1 – The interpretation model and the initial guess for each case are derived from the filtered apparent resistivity sections which are the result of the filtering process of the EMAP method; 2 – One layer formed by small outcropping bodies (termed static shift layer) is added to the interpretation model in order to resolve the sources of static distortions that contaminate the data; 3 – The inversion is constrained by approximate equality constraints. The first two steps enable us to extract the largest possible amount of information from the data, while the use of the approximate equality constraints allow us to incorporate a priori information which has true physical or geological meaning. With these steps we obtain solutions that are stable and meaningful. We study the method in two-dimensional models as well as in real data from an EMAP line surveyed at the Paraná Basin.Item Acesso aberto (Open Access) Informação a priori na inversão de dados magnetotelúricos(Universidade Federal do Pará, 1999-12-29) LUIZ, José Gouvêa; RIJO, Luiz; http://lattes.cnpq.br/3148365912720676This thesis includes two studies applied to the inversion of magnetotelluric data. In the first the dimensions of the subsurface parametrizing grid are determined knowing the resistivities of the heterogeneity and of its surrounding medium; and the other deals with the use of derivative operators of order greater than one to stabilize the inversion problem. In the first study the satisfactory results are obtained only if the resistivity errors are less than 20%; while in the second the results show that the operators of order greater than one can be more effective than conventional first derivative operators because they yield better resolution of the subsurface resistivity heterogeneity besides acting as stabilizers. These studies are new in the inversion of magnetotelluric data since, so far, resistivity of the grid blocks have been obtained with a fix grid, using the first derivative operator as stabilizer. In these studies, bi-dimensional models representing a subsurface with one and two prismatic heterogeneity are used. The effectiveness of the inversion techniques have been evaluated by applying them on both noisy and noise-free synthetic data, and on COPROD2 field profile. Also, a comparative study to analyze the effectiveness of the creeping and the jumping inversion techniques is included in this thesis. This study shows that a priori information on the parameters can be introduced in the creeping as easily as in the jumping contrary to what is mentioned in earlier publications.Item Acesso aberto (Open Access) Respostas eletromagnéticas dos arranjos coplanar e coaxial em poço(Universidade Federal do Pará, 2000-09-29) CARVALHO, Paulo Roberto de; VERMA, Om Prakash; http://lattes.cnpq.br/2723609019309173None of the known resistivity borehole devices possesses azimuthal focusing properties whereas the unconventional coplanar coil array has, by design, a strong azimuthal focus. In order to understand in detail the influence of this property of the coplanar system, its electromagnetic responses in the varying boreholes conditons are obtained for a two coil array. Although simple, the solutions of a homogeneous conducting medium are exploited to understand the skin effects phenomena. The coplanar response of a nonhomogeneous medium, obtained through Sommerfeld boundary value problem, is then extended to the various borehole models, particularly (1) the invaded mud filtrate with gradational transition zones; (2) dipping multilayer sequences; (3) thinly laminated zones, and (4) gradational transition zone between two thick beds. Based on the comparative study between, the traditional coaxial and the unconventional coplanar coil responses we conclude that: 1. the skin effects are stronger in the coplanar responses than the coaxial but this disadvantage is partially compensated by applying the corrections for these effects; 2. the polarization "horns" are obtained in the coplanar profiles in front of bed boundaries, consequently, they are their high quality indicators; 3. the coplanar system is an important auxiliar tool to investigate the mud filtrate invasion and the presence of annulus zones which are direct indicators of movable hydrocarbons, and; 4. its azimuthal focussing properties can be explored in the borehole investigations of the axially assymetrical geological situations such as vugular or fracture zones and invasion zones in horizontal wells.Item Acesso aberto (Open Access) Empilhamento sísmico por superfície de reflexão comum: um novo algoritmo usando otimização global e local(Universidade Federal do Pará, 2001-10-25) GARABITO CALLAPINO, German; CRUZ, João Carlos Ribeiro; http://lattes.cnpq.br/8498743497664023; HUBRAL, Peter; http://lattes.cnpq.br/7703430139551941By using an arbitrary source-receiver configuration and without knowledge of the velocity model the recently introduced seismic data stacking method called Common Reflection Surface (CRS) simulates a zero-offset (ZO) section from multi-coverage seismic reflection data. For 2-D acquisition, as by-products provides three normal ray parameters: 1) the emergence angle (β0); 2) the radius of curvature of the Normal Incidence Point Wave (RNIP); and 3) the radius of curvature of the Normal Wave (RN). The CRS stack is based on the hyperbolic traveltime paraxial approximation depending on β0, RNIP and RN. In this thesis is presented a new algorithm of the CRS stack based on two-parameters and one-parameter search strategy combining global and local optimization methods for determine the three parameters that define the stacking surface (or operator). This is performed in three steps: 1) two-parameters search by applying global optimization to determine β0 and RNIP; 2) one-parameter search by applying global optimization to determine RN; and 3) three-parameters search by applying local optimization to determine three parameters, using as initial approximations the parameter triple of the earlier two steps. In the first two steps is used the Simulated Annealing (SA) algorithm and the Variable Metric algorithm is used in the third step. To simulate the conflicting dip events, for each ZO sample where there are interference of intersecting events is determined an additional parameter triple corresponding to a local minimum. The stacking along the respective operator for each particular event allows to simulate their interference in the simulated ZO section by means of their superposition. This new CRS stack algoritm was applied to synthetic data sets providing high-quality simulated ZO sections and high precision determination of the stack parameters in comparison with the forward modeling. Using the hyperbolic traveltime approximation for identical radii of curvature RNIP = RN, an algorithm called Common Diffraction Surface (CDS) stack was developed to simulate ZO sections for diffracted waves. In a similar way to the CRS stack procedure, this new algorithm also uses the SA and VM optimization methods to determine the optimal parameter couple (β0, RNIP) that define the best CDS operator. The main features of the algorithm are the data normalization, common-offset data, large aperture of the CDS operator and positive search space for RNIP. The application of the CDS stack algorithm in a synthetic dataset containing reflected and diffracted wavefields provides as main result a simulated ZO section containing diffracted events clearly defined. The post-stack depth migration of the ZO section locates correctly the discontinuities of the second interface.
- «
- 1 (current)
- 2
- 3
- »