Teses em Geofísica (Doutorado) - CPGF/IG
URI Permanente para esta coleçãohttps://repositorio.ufpa.br/handle/2011/2357
O Doutorado Acadêmico pertente a o Programa de Pós-Graduação em Geofísica (CPGF) do Instituto de Geociências (IG) da Universidade Federal do Pará (UFPA).
Navegar
Navegando Teses em Geofísica (Doutorado) - CPGF/IG por Orientadores "RIJO, Luiz"
Agora exibindo 1 - 6 de 6
- Resultados por página
- Opções de Ordenação
Item Acesso aberto (Open Access) Influência de estruturas geológicas bidimensionais no campo geoeletromagnético na presença do eletrojato equatorial(Universidade Federal do Pará, 2005) SILVA, Marcos Welby Correa; RIJO, Luiz; http://lattes.cnpq.br/3148365912720676The Earth acts as a large magnet, whose field resembles one that is generated by a magnetic dipole. This field presents intensity changes that vary with observation location and the local time. The main part of the geomagnetic field is created within the Earth by electromagnetic processes. Extensive studies showed that there are also contributions from outside the Earth, mainly from solar origin. Among these outside sources there are anomalies of the magnetic field that arise from an diurnal increase of the electric current in a narrow strip located in the ionosphere, with east-west direction, centered above the magnetic equator and denominated Equatorial Electrojet (EEJ). Occasionally these currents present flow reversions, therefore denominated Counter-Electrojet (CEJ). Several authors have been studying the effects of the EEJ on the geomagnetic observations. They are interested in the combined effect of the equatorial electrojet and the 1-D e 2-D conductive geological structure underneath. In these works the 2-D structure is always considered parallel to the electrojet, which is a quite restrictive hypotheses in view to realistic geological situation, in that two-dimensional structures can have any direction in relation to the electrojet. We present in this work the solution of this problem without this restriction. Thus, here we present the geomagnetic fields due to a two-dimensional structure that possess oblique strike in relation to Equatorial Electrojet, through profiles of the electric and magnetic fields, calculated on the surface and forming arbitrary direction to the 2-D conductive heterogeneity. Further, we also evaluate the influence of an arbitrarily oriented two-dimensional structure would cause on the Magnetotelluric data, under the quatorial Electrojet. In the development of this work, we applied the method of finite elements with the EEJ and CEJ as electromagnetic source, that was represented by a sum of gaussians distributions of current density. This source was decomposed in the parallel and the perpendicular directions to the 2-D structure, resulting in the mode TE1 and the coupled mode TE2 and TM, respectively. We solved the coupled mode applying a Fourier Transform in the Maxwell equations and one Inverse Fourier Transform in the transformed-domain solution. According to the numerical experiments on a interpretative model of Parnaíba Basin Conductivity Anomaly, formed by a large 3000 ohm-m body inside a very conductive (1ohm-m) external structure, we conclude that the presence of the CEJ causes an inversion in the anomaly. We also conclude that at high frequencies the components of the electric field present smaller influence of the internal part of the 2-D body than the external part. Otherwise, we observed this behavior in the magnetic field at low frequencies. Varying the frequencies, we saw the effects of the “skin-depth” mainly in the magnetic field. Besides, there are situations where electric field is insensitive to the internal structure of the model for all values of the frequency used. With regard to the angle θh between the strike of the conductive heterogeneity and the EEJ direction, we observe the TM mode naturally when θh is different from 0°. In this case, the TE mode is composed of two components, one decomposition of the EEJ parallel to the heterogeneity and the other perpendicular to it. As consequence, the E and B fields have all their three components. When we analyzed the influence of the angle between the direction of the profile of fields and the strike of the 2-D heterogeneity, we conclude that its variation causes an asymmetry on the anomalies, which give an idea about the profile’s direction. Finally, we conclude that one of the influences that the distance between the center of the electrojet and center of the 2-D structure causes on the fields is related to the reverse currents, because at 500 km from the EEJ’s center, these currents have their maximum intensity. In the MT soundings, we also used the EEJ and CEJ as primary source and we compared our results with the plane wave response. We noted that the components of the geomagnetic field, used to evaluate the impedance, have an influence from the coupling factor between the TE2 and TM modes. Moreover, this influence become greater with decreasing of the frequency and for resistive host. However, the coupling factor do not affects the MT response at frequencies higher than 10-2 Hz. For lower frequencies, about 10-4 Hz, we detect two kinds of pertubations on the MT data with respect to the plane-wave one: the first is due the presence of the 2-D electromagnetic source (EEJ and CEJ) as primary field, which violates the plane wave hypothesis; and the second is caused by the coupled TE and TM modes because additional electric currents arise in the heterogeneity’s direction when it is oblique to EEJ. These efects increase with the resistivity of the environment. In conclusion, the strike of a large conductive 2-D structure relative to the direction of the EEJ or CEJ do have influence on the geomagnetic field. On the other hand, for shallow magnetotelluric studies (frequencies higher than 10-3 Hz) the effect of angle between the strike of the 2-D geological structure and the direction of the EEJ is not so important. However, for litospheric studies (frequencies lower than 10-3 Hz) the coupling between the two modes can not be ignored.Item Acesso aberto (Open Access) Informação a priori na inversão de dados magnetotelúricos(Universidade Federal do Pará, 1999-12-29) LUIZ, José Gouvêa; RIJO, Luiz; http://lattes.cnpq.br/3148365912720676This thesis includes two studies applied to the inversion of magnetotelluric data. In the first the dimensions of the subsurface parametrizing grid are determined knowing the resistivities of the heterogeneity and of its surrounding medium; and the other deals with the use of derivative operators of order greater than one to stabilize the inversion problem. In the first study the satisfactory results are obtained only if the resistivity errors are less than 20%; while in the second the results show that the operators of order greater than one can be more effective than conventional first derivative operators because they yield better resolution of the subsurface resistivity heterogeneity besides acting as stabilizers. These studies are new in the inversion of magnetotelluric data since, so far, resistivity of the grid blocks have been obtained with a fix grid, using the first derivative operator as stabilizer. In these studies, bi-dimensional models representing a subsurface with one and two prismatic heterogeneity are used. The effectiveness of the inversion techniques have been evaluated by applying them on both noisy and noise-free synthetic data, and on COPROD2 field profile. Also, a comparative study to analyze the effectiveness of the creeping and the jumping inversion techniques is included in this thesis. This study shows that a priori information on the parameters can be introduced in the creeping as easily as in the jumping contrary to what is mentioned in earlier publications.Item Acesso aberto (Open Access) Inversão vinculada de dados de EMAP e MT-1D anisotrópico(Universidade Federal do Pará, 1999-11-26) RÉGIS, Cícero Roberto Teixeira; RIJO, Luiz; http://lattes.cnpq.br/3148365912720676We present a technique to invert magnetotelluric data. Two kinds of MT data are treated: data generated by anisotropic one-dimensional models and two-dimensional data from EMAP (ElectroMagnetic Array Profiling) surveys. In both cases we perform the inversions using approximate equality constraints to stabilize the solutions. We show the advantages and the limitations of those constraints in the inversion process. Even when the inversion is constrained, it can still be unstable. To invert the two-dimensional EMAP data we present a process that consists of three steps: 1 – The interpretation model and the initial guess for each case are derived from the filtered apparent resistivity sections which are the result of the filtering process of the EMAP method; 2 – One layer formed by small outcropping bodies (termed static shift layer) is added to the interpretation model in order to resolve the sources of static distortions that contaminate the data; 3 – The inversion is constrained by approximate equality constraints. The first two steps enable us to extract the largest possible amount of information from the data, while the use of the approximate equality constraints allow us to incorporate a priori information which has true physical or geological meaning. With these steps we obtain solutions that are stable and meaningful. We study the method in two-dimensional models as well as in real data from an EMAP line surveyed at the Paraná Basin.Item Acesso aberto (Open Access) Modelagem numérica da influência do eletrojato equatorial em dados magnetotelúricos produzidos por estruturas tridimensionais(Universidade Federal do Pará, 1993-02-05) GONZÁLEZ CARRASQUILLA, Antonio Abel; RIJO, Luiz; http://lattes.cnpq.br/3148365912720676South America presents several unique geomagnetic features, one of which is the Equatorial Electrojet, a current system which extends east - west in Northern Brazil, for almost 3500 km. Considering the fact that the influence of the Equatorial Electrojet can be detected at great distances from its central axis, it is important to understand its effects on magnetotelluric exploration in Brazil. In magnetotelluric prospecting, the influence of the equatorial electrojet has been modelled for both one and two - dimensional geological media, employing both analytical and numerical techniques solutions such as finite element and finite difference. Three-dimensional geological media have been modeled by "thin – layers "using a "thin sheet" algorithm. Lines of current, gaussian electrojets and undulatory electrojets have been used as induction sources to simulate the equatorial electrojet in these algorithms. In this thesis the principal objective is to model the effects of the equatorial electrojet on three - dimensional structures commonly found in geophysical prospecting. To accomplish this, we have computed numerical solutions of the integral equation for three - dimensional media using the inductive sources mentioned before. As previous works have indicated, our results also show that the influence of the equatorial electrojet is prominant only for frequencies lower than 10-1 Hz. This influence decreases with distance but is detectable up to as far as 3000 km from the center of the electrojet. Thus, the presence of peaks in the apparent resistivity profiles over a homogeneous half - space indicates that the influence of the electrojet is more noticeable for this kind of medium. These peaks display different amplitudes for each type of simulated electrojet, and the peak locations also change from one electrojet to the other. However, when we use more geologically realistic one - dimensional models such as a stratified media, the effect of the electrojet source diminishes considerably and the results do not vary greatly for the different kinds of electrojet employed in the model. This effect is caused by the electromagnetic energy dissipation due to the presence of stratified conductive layers within the media. Within the 3000 km region, the three - dimensional electromagnetic response can be larger or smaller than the plane wave response, depending on location body, frequency, kind of the electrojet and geology. When the apparent resistivity is larger than the plane wave response, there is a spread between the one and the three-dimensional sounding curves caused by the electrojet, as well as a widening of the profile anomaly caused by the three - dimensional inhomogeneities relative to the one due to a plane wave. When the apparent resistivity is less the two kinds of sources yield anomalies approximately equal as well as a shortening of the profile anomaly. On the other hand, the phase usually shows an inverted way related to the apparent resistivity. This means that when one phase goes up the apparent resistivity goes down, and vice - versa. Similarily at high frequencies, the one and three - dimensional phases are offset, while at low frequencies they are the same, except for the undulating electrojet with undulation factor α = -2 and -3. Our results also show that the geometric characteristics of three-dimensional structures, such as their orientation relative to the direction of the electrojet and the dimensions of their principal direction, change the response due to the electrojet source as compared to a plane wave source. For example, when the three - dimensional structure is rotated 90 degrees, relative to the direction of the electrojet, there is a change in polarization (of the electric and magnetic fields) but there are no changes in the values of apparent resistivity at the center of symmetry of the structure. When the measurements are taken away from the center of symmetry changes in the apparent resistivity are shown when compared with the unrotated structure. This is due to the persistente of the galvanic effects at the center of the structure and the presence of inductive effects at the periphery of the three - dimensional body. When we elongate the principal direction of the three - dimensional structure, the magnetotelluric soundings start to approach those of two-dimensional structures. This is more noticiable in the XY polarization. Even so, the responses of the models tested are still quite different from the responses of the quasi two - dimensional structures. Nevertheless, the effects of the electrojet in structures with elongated principal direction are very similar to those present in smaller structures, considering the differences between the soundings of both kinds of structures. On the other hand, the apparent resistivities of this kind of elongated structures show a great increase at the edges of these structures, both for the plane wave or electrojet sources. This effect is caused by the chanelling of the current along the main direction of the structure. The modelling of gelogical structures in the Marajó Basin, confirms that the effects of the electrojet can be detected even in small horst and graben structures located at great distances from electrojet center. Electrojet effects are noticeable in both one and three - dimensional media for two frequency bands, one near 10-1 Hz and another band, between 10-3 Hz to DC. This possibly reflects the influence of a resistive geological basement and a resistive lower crust, respectively. The results of the analysis, using the electrojet as an inductive source show that at low frequencies the computed responses from the magnetotelluric soundings can be strongly distorted, both by galvanic effects in the three - dimensional structure as well as the presence of the electrojet. Therefore, if the equatorial electrojet effects are not accounted for, a misleading interpretation magnetotelluric data will result. Similarily, a three - dimensional model should be used to interpret the data, instead of one-dimensional Tikhonov-Cagniard model.Item Acesso aberto (Open Access) Modelagem numérica de dados MCSEM 3D usando computação paralela(Universidade Federal do Pará, 2007) SOUZA, Victor Cezar Tocantins de; RIJO, Luiz; http://lattes.cnpq.br/3148365912720676We developed the numerical modeling of Marine Controlled Source Electromagnetic (MCSEM) synthetic data used in hydrocarbon exploration for three-dimensional models using parallel computation. The models are formed of two strati ed layers: the sea and the host with a thin three-dimensional embedded reservoir overlapped by the air half-space. In this work we present a three-dimensional nite elements technique of MCSEM modeling using the primary and secondary decomposition of the magnetic and electric coupled potentials. The electromagnetic elds are calculated by numerical di erentiation of the scattered potentials. We explore the parallelism of the MCSEM 3D data in a multitransmitter survey, where as for each transmitter position we have the same forward model but with di erent data. For this, we use Message Passing Interface library (MPI) and the client server approach, where the server processor sends the input data to client processors to perform the calculation. The input data are formed by the parameters of the nite element mesh, together with informations about the transmitters and the geoeletric model of hydrocarbon reservoir with prismatic geometry. We observe that when the horizontal width and the length of the reservoir have the same order of magnitude, the in-line responses are very similar and the consequently the three-dimensional e ect is not detectable. On the other hand, when the di erence in the sizes of the horizontal width and the length of the reservoir is very large, the e ect 3D is easily detected in in-line along the biggest dimension of the reservoir. For measures done along the lesser dimension this e ect is not detectable, therefore, the model 3D approaches to a bidimensional model. The parallelism of multiple data has fast implementation and processing, and its time of execution is of the same order of the serial problem, with the addition of the latency time in the data transmission among the cluster nodes, which justifying this methodology in modeling and interpretation MCSEM data. Only simple 3D models were computed because of the reduced memory (2 Gbytes in each node) of the cluster of UFPA Departament of Geophysics.Item Acesso aberto (Open Access) Tomografia eletromagnética para caracterização de reservatórios de hidrocarbonetos(Universidade Federal do Pará, 2003-10-03) BAPTISTA, João Júnior; RIJO, Luiz; http://lattes.cnpq.br/3148365912720676In the oil production it important the monitoring of the reservoir parameters (permeability, porosity, saturation, pressure, etc) for its management. Changes in the reservoir dynamic parameters induce variations in reservoir flow, as for example, losses in the pressure, making it difficult the process of extraction of the oil. The fluid injection increases the internal energy and pressure of the reservoir, stimulating the movement of the oil in the direction of the extracting wells. The crosswell electromagnetic method can become in efficient technique in monitoring the injection processes, considering the fact that the percolation of conductive fluid through the sediment is a very sensitive. This thesis presents the results of a very efficient algorithm of electromagnetic tomography applied to synthetic data. The imaging scheme assumes a cylindrical symmetry around a source consisting of a magnetic dipole. During the process of imaging we used 21 transmitters and 21 receivers distributed within two wells 100 meters apart. For the forward problem solution it was used the finite element method applied to the Helmholtz equation for the secondary electric field. It will be demonstrated that the algorithm obtained is not under restrictions imposed by Born and Rytov approximations, therefore, the algorithm can be efficiently applied for any situation as a electric conductivity contrasts as large as 2 to 100, frequencies as 0.1 to 1000.0 kHz and scatterers of any dimensions. The inverse problem was solved using the stabilized Marquardt scheme. This scheme employs a technique that seeks the solution iteratively. The inverted synthetic data, with added Gaussian noise, are the magnetic vertical component, separated in its respective real (in-phase) and imaginary (quadrature) parts. Without constrains, the inverse tomography problem is totally unstable. To stabilize the inverse solution, absolute and relative constraints have been used. The use of these constraints allows producing high definition images. The results show that the resolution is better in the vertical direction than the horizontal and it is also a function of source operating frequency. The position and attitude of the target are recovered well. These results show that constraints can attenuate or eliminate the poor resolution.