Teses em Geologia e Geoquímica (Doutorado) - PPGG/IG
URI Permanente para esta coleçãohttps://repositorio.ufpa.br/handle/2011/6341
O Doutorado Acadêmico pertence ao Programa de Pós-Graduação em Geologia e Geoquímica (PPGG) do Instituto de Geociências (IG) da Universidade Federal do Pará (UFPA).
Navegar
Navegando Teses em Geologia e Geoquímica (Doutorado) - PPGG/IG por Orientadores "DALL'AGNOL, Roberto"
Agora exibindo 1 - 12 de 12
- Resultados por página
- Opções de Ordenação
Tese Acesso aberto (Open Access) Estudos isotópicos de U-Pb, Lu–Hf e δ18o em zircão: implicações para a petrogênese dos granitos tipo-A paleoproterozóicos da província Carajás – Cráton Amazônico(Universidade Federal do Pará, 2018-04-05) TEIXEIRA, Mayara Fraeda Barbosa; SANTOS, João Orestes Schneider; http://lattes.cnpq.br/5516771589110657; DALL'AGNOL, Roberto; http://lattes.cnpq.br/2158196443144675Em ~1880 Ma, um extenso evento magmático gerou granitos tipo-A com afinidade rapakivi no Cráton Amazônico, com destaque para a Província Carajás. Nesta província, esse magmatismo compreende batólitos e stocks anorogênicos agrupados em três suítes: (1) Suíte Jamon oxidada; (2) Suíte Velho Guilherme, ferrosa reduzida, com leucogranitos estaníferos associados; (3) Suíte Serra dos Carajás, constituída por plutons moderadamente reduzidos. Além dessas três suítes, também ocorrem nos diferentes domínios da província outros corpos graníticos tipo-A com características semelhantes aos das suítes mencionadas. Entre eles, dispõem-se de informações sobre os granitos Seringa, São João, Gogó da Onça, Rio Branco e Gradaús. O Granito Gogó da Onça Granite (GGO) compreende um stock localizado no sudeste de Canaã dos Carajás, composto por biotita-anfibólio granodiorios, biotita-anfibólio monzogranito e biotita-anfibólio sienogranito. Apresenta comportamento geoquímico similar aos granitos anorogênicos de Carajás. É um granito metaluminoso, ferroso do subtipo A2- com caráter reduzido. O comportamento dos elementos traços sugere que suas diferentes fácies são relacionadas por cristalização fracionada. Dados U-Pb SHRIMP em zircão e titanita mostraram que o GGO cristalizou entre ~ 1880 e 1870 Ma. Esse granito mostra contrastes significativos com as suítes Jamon e Velho Guilherme. O GGO é mais parecido com a Serra dos Carajás e com os granitos Seringa e São João, e aos granitos Sherman (mesoproterozóico) dos EUA e o Batólito Suomenniemi (paleoproterozóico) da Finlândia. Novos dados U-Pb SHRIMP para os granitos das suítes Jamon, Serra dos Carajás e Velho Guilherme, e para os granitos Seringa e São João mostraram que esses plutons cristalizaram entre 1880 Ma e 1857 Ma, situando-se o principal pico do magmatismo em cerca de 1880 Ma. As análises em zircão e titanita revelaram ainda idades de ~1900 Ma a ~1920 Ma nas suítes Velho Guilherme e Jamon e no Granito Seringa que representam possivelmente fases cristalizadas precocemente, incorporadas nos pulsos magmáticos dominantes, mais tardios. Também foram obtidas idades mais jovens (~1865 Ma a ~1857 Ma), comparadas aquelas obtidas para as fases menos evoluídas, para leucogranitos que formam stocks tardios nos corpos Bannach e Redenção. Esses dados sustentam a interpretação de que estes leucogranitos foram gerados por pulsos magmáticos independentes e tardios na evolução daqueles corpos, conforme já havia sido proposto por outros autores. Além das idades mencionadas, uma idade de 1732 ± 6 Ma foi obtida na facies de leucogranita do pluton Antônio Vicente da Suite Velho Guilherme, e poderia representar um evento magmático na região do Xingu ainda não relatado ou, eventualmente, poderia corresponder a um evento hidrotermal isolado que permitiu o crescimento de zircões. Além dos dados geocronológicos esses granitos foram analisados por isótopos de Hf, O e alguns plutons por isótopos de Nd. Em geral, os zircões analisados desses granitos têm composição inicial 176Hf/177Hf razoavelmente restrita, variando entre 0,281156 e 0,281384, com valores fortemente negativos εHf(t) variando de -9 a -18 e δ18O homogêneos variando de 5,50 ‰ a 7,00 ‰. Os valores obtidos para o ƐHf(t) nos diferentes granitos analisados são fortemente negativos e coerentes de modo geral com os dados isótopicos de Nd. Na Suíte Serra dos Carajás os valores de ƐHf(t) variam entre -14 a -15,5, na Suíte Jamon entre -9,5 a -15, e na Suíte Velho Guilherme entre -12 a -15, enquanto que os granitos São João, Seringa e Gogó da Onça tendem a apresentar valores mais acentuadamente negativos [ƐHf(t)= -12 a -18]. Apesar dos dados isotópicos serem homogêneos, pequenas variações foram observadas em diferentes plutons de uma mesma suíte e em diferentes fácies de um pluton. Com por exemplo na Suite Jamon, as composições isotópicas são mais variáveis, especialmente nos leucogranitos evoluídos dos plutons Bannach e Redenção, e fontes com contraste no grau de oxidação podem ser desenvolvidas na geração desses leucogranitos. Os dados isotópicos de Hf indicaram fontes crustais paleoarqueanas (3.3Ga 3.6 Ga) com menor contribuição mesoarquena (3,0 Ga a 3,2 Ga) como fontes desses granitos. Essas idades são mais antigas que as idades das rochas Arquenas encaixantes desses granitos, que estão expostas na Província Carajás, e é necessário investigar a presença de crosta arqueana mais antiga em Carajás. As composições de Nd, Hf e O dos granitos paleoprozozóicos da Província de Carajás atestam claramente fonte crustais ígnea arqueanas na origem de seus magmas. As diferenças observadas podem resultar em contrastes nos domínios crustais da Província Carajás que foram a fonte dos granitos ou por processos de contaminação local.Tese Acesso aberto (Open Access) Geologia e petrogênese do “Greenstone Belt” identidade: implicações sobre a evolução geodinâmica do terreno granito - “Greenstone” de Rio Maria, SE do Pará(Universidade Federal do Pará, 1994-10-07) SOUZA, Zorano Sérgio de; DALL'AGNOL, Roberto; http://lattes.cnpq.br/2158196443144675Este trabalho trata da geologia e petrogênese do "greenstone belt" Identidade, situado entre as cidades de Xinguara e Rio Maria, SE do Estado do Pará. Os dados obtidos permitiram discutir a evolução geodinâmica do terreno granito - "greenstone" da região de Rio Maria, inserindo-a no contexto da Província Mineral de Carajás (PMC), SE do cráton Amazônico. O "greenstone" em lide compõe um cinturão "sinformal" direcionado WNW-ESE, correspondendo a um pacote metavulcãnico, com xistos ultramáficos (UM), basaltos (BAS) e gabros (GB) na base, e, no topo, rochas hipabissais dacíticas (DAC - ca. 2,94 Ga, Pb/Pb). O conjunto foi intrudido por metaplutônicas Mesoarqueanas, os tipos mais precoces sendo quartzo dioríticos, seguidos sucessivamente por granodioritos (com enclaves máficos), trondhjemitos / tonalitos e leucogranitos. O embasamento gnáissico (GN - aflorante a norte e reconhecido por conter uma fábrica mais antiga Sn-1/D1), o "greenstone" e os metagranitóides foram intrudidos no final do Paleoproterozôico por enxames de diques riolíticos (ca. 1,60 Ga, Rb/Sr) e diabásicos. O "greenstone" apresenta estruturas e texturas ígneas reconhecíveis, porém obliteradas em regiões de contato com metagranitóides e em zonas de cisalhamento. As ultramáficas ocorrem como tremolititos, tremolita - talco xistos e talco xistos; o anfibólio é bastante alongado e fino, comumente em arranjos paralelos, interpretados como fantasmas de texturas "spinifex". Os basaltos são maciços ou almofadados, freqüentemente variolíticos. Mostram diferentes graus de recristalização, sendo identificados restos de texturas hialofiticas, pilotaxíticas e traquitóides. Clinoanfibólio (hornblenda actinolítica), epídotos e plagioclásio (albita - andesina) são os minerais mais abundantes. Os gabros são maciços a porfiriticos, distinguindo-se relíquias de texturas subofiticas e granofiricas. Os dacitos são porfiríticos, com fenocristais de quartzo e plagioclásio (oligoclásio), além de hornblenda e nódulos máficos (biotita, clorita, opacos, epidotos, titanita, apatita) nas variedades menos evoluídas. Dentre os metagranitóides, os leucogranitos e trondhjemitos contêm biotita cloritizada, enquanto granodioritos e parte dos tonalitos portam biotita ou biotita + hornblenda (também em quartzo dioritos). O "greenstone" e os metagranitóides foram afetados por uma deformação dúctil, heterogênea, que evoluiu para zonas miloníticas. A estruturação da área é marcada por uma fábrica planar (Sn//Sm/D2) direcionada WNW-ESE a E-W, de mergulhos divergentes. Lineações de estiramento E-W, WNW-ESE ou NW-SE, meso e microestruturas assimétricas S-C, peixes de micas e de clinoanfibólios, e rotações de porfiroclastos a e 15 indicaram uma megaestrutura resultante de um binário com encurtamento NW-SE. A geometria atual do "greenstone" seria derivada de transpressão dextrógira, com o "greenstone" compondo uma estrutura em flor positiva. O regime transpressivo favoreceu a criação de regiões transtrativas, onde se alojaram plútons graníticos no NW, além de clivagens de crenulação extensional (Sn+i/D2) no SW. A quantificação da deformação revelou encurtamento da ordem de 60%, extensão subhorizontal, paralela ao "trend" do "greenstone", de 68 a 500%, e extensão vertical de 101 a 280%. O elipsóide de deformação variou de oblato a prolato, com mudanças de densidade e rotação do eixo de estiramento máximo (X) nas zonas miloníticas. A inversão da deformação permitiu reconstruir a forma original do "greenstone", que seria também alongada WNW-ESE, embora de excentricidade menor que a atual. Estes dados, juntamente com a petrofábrica do eixo c do quartzo, sugeriram que a deformação progressiva envolveu mecanismos de cisalhamento puro e simples, sendo o arcabouço final resultante deste último. Falhas e fraturas rúpteis diversas, afetando também diques riolíticos e diabásicos, marcaram o último evento (D3). As paragêneses minerais do metamorfismo principal (Mn/M2) originaram-se de recristalização estática, pré-tectônica, que modificou parte das texturas e quase totalmente a mineralogia das rochas do "greenstone". Formaram-se anfibólio verde azulado (hornblenda actinolítica), epídotos (pistacita predominante), titanita e quartzo em BAS e GB; tremolita, talco e clorita em UM. Saussuritização e sericitização de plagioclásio, biotitização de anfibólio, cloritização de biotita e transformação de hornblenda em titanita verificaram-se nos metagranitóides. A coexistência de hornblenda + plagioclásio (An> 17) e/ou hornblenda actinolítica + epidotos + clorita em rochas metabásicas mostrou que o evento supra foi de pressão baixa e temperaturas transicionais entre as fácies xisto verde e anfibolito. Este episódio essencialmente térmico refletiu o aquecimento crustal produzido pelo plutonismo do final do Mesoarqueano, tendo obliterado as associações prévias do metamorfismo de fundo oceânico. Ligeiramente concomitante a francamente subseqüente, houve um evento de recristalização dinâmica extensiva (Mm/M2) na fácies xisto verde, particularmente em zonas de cisalhamento e contatos litológicos. Em tais locais, existem evidências de aporte de fluidos (blastomilonitos xistosos e abundantes veios de quartzo) e remobilização da maioria dos elementos químicos (Al, Fe, Ca, K, Na, Rb, Sr, Zr). Em condições PT ainda menores, deu-se finalmente a ação de um evento discreto, relacionado com crenulações e formando clorita, epídotos e quartzo (Mn+1/M2). O evento M2, bem como aquele detectado somente em GN (M1 em fácies anfibolito), foram de natureza dúctil, o que os distinguiu nitidamente do último episódio (D3/M3). Este foi posicionado no final do Paleoproterozóico, tendo caráter hidrotermal e associado á feições rúpteis de alto nível crustal. A evolução progressiva do metamorfismo M2, com pico térmico precoce ao pico da deformação, sugeriu uma trajetória P-T-t anti-horária, correspondente á evolução metamórfica de bacias marginais fanerozóicas. Algumas análises químicas de rochas metavulcânicas permitiram a definição de séries magmáticas e discussão de modelos petrogenéticos. Reconheceram-se três séries geoquímicas, a saber, da mais antiga para a mais nova, komatiítica (UM), toleitica (BAS e GB) e cálcio-alcalina (DAC). A primeira corresponde a komatiitos peridotíticos, com MgO>18% em peso (base anidra), com um "trend" de enriquecimento em Al, tal como em Geluk e Munro, e menos cálcico do que Barberton. Os padrões de terras raras leves são irregulares, com razões (La/Sm)N entre 0,42 e 4,2 e anomalias negativas de Eu. Os terras raras pesadas pareceram menos afetados por processos pós-eruptivos, sendo planos ou ligeiramente fracionados (1,0<(Gd1Yb)N<2,3). Modelos quantitativos foram de dificil execução em virtude da remobilização de vários elementos, porém, em termos qualitativos, foi possível estimar cumulados ricos em olivina e ortopiroxênio. Dentre os toleítos, BAS e GB apresentaram padrões geoquímicos muito similares entre si. Ambos são toleítos de baixo potássio, comparáveis a toleítos arqueanos empobrecidos. Os elementos terras raras são quase planos, com valores 10X o condrito, e anomalias fracas ou inexistentes de Eu. Modelos preliminares sugeriram cumulados semelhantes para BAS e GB, compostos essencialmente de clinopiroxênio e plagioclásio. De acordo com alguns cálculos geoquímicos, a fonte dos magmas que originaram os komatiitos e toleítos seria o lherzolito a granada. Os DAC apresentaram características geoquímicas afins à metavulcânicas e metaplutônicas cálcio-alcalinas tanto modernas quanto arqueanas, seguindo o "trend" trondhjemítico. A diferenciação magmática teria decorrido por fracionamento de plagioclásio>quartzo>hornblenda>K-feldspato, com quantidades accessórias de biotita, magnetita, titanita, alanita e zircão. A fonte do magma dacítico seria crustal do tipo toleíto metamorfisado em fácies granada anfibolito e ligeiramente enriquecido em terras raras leves. No modelo geodinâmico proposto, já existia um embasamento gnáissico antes de 2,96 Ga. Entre 2,96 e 2,90 Ga, a conjugação de alto gradiente geotérmico com extensão litosférica provocou o rifteamento continental, formando bacias marginais, onde se daria a extrusão de komatiitos e toleítos. Em torno de 2,94(?)-2,90 Ga, geraram-se os DAC através de fusão de crosta oceânica em zonas de subducção, evoluindo por fracionamento a baixas pressões. Os mesmos mecanismos geradores dos DAC também seriam responsáveis pelo plutonismo cálcio-alcalino, culminando com a inversão estrutural do "greenstone", espessamento crustal e forma final do terreno granito - "greenstone" (transpressão dextrógira ca. 2,88-2,86 Ga). A região sofreu ainda um episódio de (rea)quecimento, detectado a nível de minerais, sem deformação e metamorfismo correlatos, ao final do Eoarqueano (2,69-2,50 Ga), e intrusão de enxames de diques riolíticos (1,60 Ga, Rb/Sr) e diabásicos ao final do Paleoproterozóico. A correlação com o conhecimento atual da PMC permitiu admitir que o terreno granito - "greenstone" de Rio Maria já estava configurado quando da implantação do Supergrupo Itacaiúnas (ca. 2,76 Ga) e da granitogênse alcalina na Serra dos Carajás. Assim, a transpressão sinistrógira que inverteu aquele supergrupo corresponderia a um evento posterior e bem distinto da transpressão dextrógira da região de Rio Maria.Tese Acesso aberto (Open Access) Geologia, geoquímica e geocronologia do magmatismo paleoproterozóico da região de Vila Riozinho, Província Aurífera do Tapajós, Cráton Amazônico(Universidade Federal do Pará, 2001-09-27) LAMARÃO, Cláudio Nery; DALL'AGNOL, Roberto; http://lattes.cnpq.br/2158196443144675A Província Aurífera do Tapajós (PAT), situada na porção centro-meridional do Cráton Amazônico, é caracterizada pela ocorrência de extensas suítes de rochas plutônicas e vulcânicas. Muitas destas estão representadas na região de Vila Riozinho, localizada na porção nordeste da PAT, próxima ao contato entre as províncias Ventuari-Tapajós ou Tapajós-Parima e Amazônia Central. O magmatismo da porção sul da região de Vila Riozinho é representado pelas rochas vulcânicas da Formação Vila Riozinho e pelo maciço São Jorge, no qual foram individualizados os granitos São Jorge Antigo e São Jorge Jovem, além de pequenas ocorrências de granitos pórfiros. A Formação Vila Riozinho é constituída por andesitos basálticos, traquiandesitos basálticos, traquitos, riolitos, tufos e brechas com assinatura geoquímica cálcico-alcalina alto-K a shoshonítica. Datações Pb-Pb em zircão em traquitos desta unidade revelaram idades de 2004±4 Ma e 1998±3 Ma. O Granito São Jorge Antigo corresponde a maior parte do pluton São Jorge. Este é composicionalmente zonado, sendo formado por uma série expandida à base de monzodioritos a quartzo-monzodioritos nas bordas nordeste, norte e leste, monzogranitos a quartzo-monzonitos nas porções intermediária-central e leucomonzogranitos a sienogranitos no centro, correspondendo às rochas mais evoluídas do corpo. Apresenta composição metaluminosa a fracamente peraluminosa, afinidade cálcico-alcalina alto-K e características geoquímicas de granitos gerados em ambiente de arco vulcânico. Datações Pb-Pb em zircão em rochas monzograníticas forneceram idades de 1981±2 Ma e 1983±8 Ma, interpretadas como idades de cristalização do corpo. O Granito São Jorge Jovem foi identificado inicialmente em testemunhos de sondagens na área de garimpo São Jorge, sendo o hospedeiro da mineralização aurífera primária. É mineralógica e petrograficamente similar ao Granito São Jorge Antigo, porém apresenta feições geoquímicas contrastantes e idade de cristalização de 1891±3 Ma. A porção norte da região de Vila Riozinho é dominada por rochas vulcânicas efusivas e piroclásticas félsicas pertencentes à Formação Moraes Almeida, associadas ao Granito Maloquinha. A Formação Moraes Almeida é constituída predominantemente por ignimbritos com riolitos e traquitos subordinados. Os ignimbritos forneceram idade Pb-Pb em zircão de 1875±4 Ma, enquanto riolitos e traquitos de 1890±6 Ma e 1881+4 Ma, respectivamente. O Granito Maloquinha, com idade Pb-Pb em zircão de 1880±9 Ma, é formado por leuco-sienogranitos com leucomonzogranitos subordinados. Os estudos realizados mostraram que as rochas pertencentes a essas duas unidades possuem fortes similaridades petrográficas e assinaturas geoquímicas semelhantes a de granitos do tipo-A aluminosos. Tais fatos evidenciam uma ligação genética entre o Granito Maloquinha e a Formação Moraes Almeida. Além desses, foi estudado, ainda que de modo preliminar, o Granito Jardim do Ouro situado na extremidade noroeste da área. Corresponde a um anfibólio-biotita-monzogranito com idade de 1880 +3 Ma similar a do Granito Maloquinha, porém com feições mineralógicas e geoquímicas distintas deste. Os escassos dados disponíveis indicam que o Granito Jardim do Ouro diverge igualmente dos granitos São Jorge Antigo e São Jorge Jovem, por ser comparativamente mais alcalino e formado em condições menos oxidantes. Pelo menos dois tipos de granitos pórfiros foram identificados na região de Vila Riozinho. O primeiro, provavelmente mais velho, associa-se espacialmente e mostra muitas similaridades geoquímicas com a fácies anfibólio-biotita-monzogranito a quartzo-monzonito do Granito São Jorge Antigo. O segundo, ocorre no contato entre os ignimbritos da Formação Moraes Almeida e o Granito Maloquinha. Mostra uma assinatura geoquímica similar à do Granito Jardim do Ouro e à do traquito da Formação Vila Riozinho. Dois importantes períodos de intensa atividade magmática foram identificados na região de Vila Riozinho no final do Paleoproterozóico. No primeiro, compreendido entre 2010 e 1970 Ma, foram gerados a Formação Vila Riozinho e o Granito São Jorge Antigo. No segundo, situado entre 1900 e 1870 Ma, foram originados a Formação Moraes Almeida e os granitos São Jorge Jovem, Maloquinha e Jardim do Ouro. Admite-se que o magmatismo cálcico-alcalino alto potássio formado no período de 2010 a 1970 Ma teve sua origem relacionada a processos de subducção. As manifestações magmáticas que ocorreram em torno de 1,88 Ga poderiam representar uma fase tardia, ainda vinculada aos processos de subducção ou corresponder às primeiras manifestações de processos de tafrogênese que afetaram globalmente o Cráton Amazônico a partir de 1,88 Ga e se estenderam durante o Mesoproterozóico. A segunda hipótese implica admitir fontes crustais para o magmatismo e é adotada neste trabalho.Tese Acesso aberto (Open Access) Geologia, geoquímica, geocronologia e petrogênese das suítes TTG e dos leucogranitos arqueanos do Terreno Granito-Greenstone de Rio Maria, sudeste do Cráton Amazônico(Universidade Federal do Pará, 2010-03-23) ALMEIDA, José de Arimatéia Costa de; DALL'AGNOL, Roberto; http://lattes.cnpq.br/2158196443144675; 2158196443144675As suítes tonalíticas-trondhjemíticas-granodioríticas (TTG) são os principais granitoides arqueanos, porém os corpos de leucogranitos calcico-alcalinos também possuem distribuição expressiva no Terreno Granito-Greenstone de Rio Maria (TGGRM), sudeste do Cráton Amazônico. Mapeamento geológico em áreas chaves e estudos petrográficos e geoquímicos, aliados ao refinamento dos dados geocronológicos utilizando os métodos de datação Pb-Pb por evaporação e U-Pb por LA-ICP-MS em zircão, permitiram concluir que o TGGRM foi palco de, pelo menos, três eventos formadores de TTG durante o Mesoarqueano. O primeiro evento exibe idade de 2,96±0,2 Ga e nele deu-se a geração do Trondhjemito Mogno e das rochas mais antigas do Tonalito Arco Verde. No segundo evento, ocorrido em 2,93±0,1 Ga, deu-se a formação do Complexo Tonalítico Caracol, do Tonalito Mariazinha e das rochas mais jovens do Tonalito Arco Verde. O último evento apresenta idade de 2,86±0,1 Ga e nele foi gerado o Trondhjemito Água Fria, de distribuição areal muito restrita. Comprovou-se que a idade do Trondhjemito Mogno é significativamente maior do que a anteriormente admitida, reduzindo a importância do magmatismo TTG de idade próxima de 2,87 Ga no TGGRM. Além disso, uma nova unidade TTG, denominada Tonalito Mariazinha, foi definida no mesmo e constatou-se que as rochas formadoras do Tonalito Arco Verde exibem idades variáveis no intervalo de 2,98 a 2,93 Ga. Três grupos de TTGs foram identificados no TGGRM: 1) grupo com alta razão La/Yb, apresentando altas razões Sr/Y e Nb/Ta, originado a partir da fusão de uma fonte de composição máfica, em condições de pressão relativamente elevada (≥1,5 GPa), deixando granada e anfibólio no resíduo; 2) grupo com valor moderado da razão La/Yb, derivado de magmas gerados em condições intermediárias de pressão (~1,0-1,5 GPa), porém ainda no campo de estabilidade da granada; 3) grupo com baixa razão La/Yb, e também baixas razões Sr/Y e Nb/Ta, gerado a partir de magma formado em pressões comparativamente menores (≤1,0 GPa), proveniente da fusão parcial de fonte anfibolítica, tendo plagioclásio como fase residual. Não há nenhuma correspondência temporal entre os diferentes grupos e os três períodos de formação de magmas TTG em Rio Maria. Da mesma forma, não se observa relação direta entre estes grupos e as diferentes unidades, podendo algumas delas, como, por exemplo, o Tonalito Arco Verde, englobar granitóides com alta, intermediária e baixa razão La/Yb. Os dados geocronológicos demonstram que o magmatismo granítico stricto sensu arqueano (2,87- 2,86 Ga) registrado no TGGRM, sucedeu o principal evento de geração de TTGs (2,98- 2,92 Ga), sendo contemporâneo ou ligeiramente posterior à colocação da suíte sanukitoíde Rio Maria (~2,87 Ga). Com base em dados petrográficos e geoquímicos, foram distinguidas três suítes de leucogranitos arqueanos: a) leucogranitos potássicos (granitos Xinguara e Mata Surrão), compostos dominantemente por biotita-monzogranitos com alto conteúdo de SiO2, K2O e Rb, mostrando enriquecimento em elementos terras raras leves em relação aos pesados e moderada a pronunciada anomalia de Európio. Esses granitos são similares aos granitos baixo-CaO do Cráton Yilgarn e aos granitos calcico-alcalinos CA2, assumindo-se que seus magmas foram produzidos a partir da fusão parcial de TTGs; b) Anfibólio-biotita monzogranitos, representados pelo Granito Rancho de Deus, cuja gênese deveu-se à diferenciação por cristalização fracionada de magmas sanukitóides afins aos da suíte Rio Maria, com a qual se associa; c) grupo de leucogranodioritos e leucomonzogranitos enriquecidos em Ba e Sr com fracionamento de elementos terras raras pesados em relação aos leves e geralmente desprovidos de anomalia significativa de Eu. Essas rochas mostram notáveis similaridades geoquímicas com os granitos alto-CaO (TTGs transicionais) do Cráton Yilgarn e com os granitos calcico-alcalinos CA1. Propõe-se um modelo envolvendo mistura em diferentes proporções de magmas graníticos similares às amostras mais enriquecidas em Ba e Sr da Suíte Guarantã com magmas trondhjemíticos para explicar a gênese e a variação composicional das suítes de leucogranitos enriquecidos em Ba e Sr. Os líquidos graníticos que participaram da mistura foram derivados da cristalização de 35% de magma sanukitóide de composição granodiorítica (rocha dominante na Suíte Rio Maria) pelo fracionamento de plagioclásio (46,72%), hornblenda (39,05%), clinopiroxênio (10,36%), magnetita (3,12%), ilmenita (0,70%) e allanita (0,06%). Para explicar a evolução tectônica do TGGRM, propõe-se um modelo envolvendo a subducção de uma placa oceânica sob um platô oceânico espesso. Neste contexto, o grupo de TTGs com baixa razão La/Yb teria sido derivado de magmas originados pela fusão de metabasaltos da base do platô, em condições relativamente mais baixas de pressão, ao passo que os grupos com razões La/Yb alta e moderada, seriam gerados a partir da fusão parcial de metabasaltos da crosta oceânica subductada, em condições de pressão mais elevada. Parte dos magmas TTG gerados a partir da fusão da placa oceânica subductada teria reagido com a cunha do manto durante sua ascensão e foi totalmente consumida, levando ao metassomatismo do manto. Por volta de 2,87 Ga, ou seja, 50 milhões de anos após a formação da crosta tonalíticatrondhjemítica de Rio Maria, manifestações termais, possivelmente relacionadas a processo de slab-break-off ou à ação de plumas mantélicas, induziram a fusão do manto metassomatizado e levaram à geração de magmas sanukitóides. A ascensão desses magmas aqueceu a crosta de Rio Maria e possivelmente induziu a fusão de metabasaltos localizados na base da crosta, originando o magma parental do Trondhjemito Água Fria. A fusão da crosta tonalitíca-trondhjemítica, em mais baixa profundidade, fora do campo de estabilidade da granada, teria gerado os magmas dos leucogranitos potássicos.Tese Acesso aberto (Open Access) Geoquímica, petrogênese e evolução estrutural dos granitóides arqueanos da região de Xinguara, SE do Cráton amazônico(Universidade Federal do Pará, 2001-05-25) LEITE, Albano Antônio da Silva; DALL'AGNOL, Roberto; http://lattes.cnpq.br/2158196443144675A região de Xinguara está situada na parte norte do Terreno Granito-Greenstone de Rio Maria, na porção sudeste do Cráton Amazônico, é um terreno Arqueano onde afloram greenstone belts e plutons granitóides. Granitóides e gnaisses, anteriormente agrupados no Complexo Xingu, foram individualizados em duas novas unidades: (1) Complexo Tonalítico Caracol (CTc), que possui enclaves e megaenclaves de greenstone belts (GB); (2) Trondhjemito Água Fria (THaf), intrusivo no GB de Sapucaia e no CTc e contemporâneo do Granito Xinguara (Gxg), conforme os dados estruturais e geocronológicos. Corpos granodioríticos correlacionáveis ao Granodiorito Rio Maria (GDrm), presente em outras regiões, também ocorrem em Xinguara, sendo intrusivos no CTc e cortados pelo THaf e pelo Gxg. O CTc mostra um bandamento N-S, preservado em seu domínio NW. Esta estrutura é transposta para um trend WNW-ESE regional, registrado em diferentes plútons graníticos da região e também no domínio sul do CTc. O GDrm mostra enclaves máficos fortemente achatados, definindo uma foliação paralela ao trend regional. O THaf apresenta um bandamento magmático também de orientação próxima ao trend regional. O Gxg possui forma alongada segundo este mesmo trend. A foliação é fraca, sendo subhorizontal no centro e com mergulhos fortes na borda da intrusão. Microscopicamente, o Gxg mostra recristalização variável, mas muitas vezes moderada a forte dos feldspatos. Quanto ao esforço regional predominante na época de colocação dos granitóides, a orientação do seu eixo principal de esforço (σ1) foi N40E horizontal. Esse esforço regional atuou durante o estágio submagmático do CTc, pois afetou o seu bandamento, formando dobras e boudins. Este esforço foi também responsável pela transposição de estruturas N-S para a estruturação WNW-ESE. Esforços com estas mesmas orientações geraram também as principais estruturas de deformação, desde o estágio submagmático ao subsolidus, no GDrm, THaf e no Gxg. A orientação dos esforços, pouco variou durante as duas etapas de evolução arqueana da região. As variações observadas na atitude da foliação do CTc sugerem que os seus corpos formaram estruturas dômicas, posteriormente obliteradas pela deformação e pelas intrusões dos granitóides mais jovens. Para o GDrm, os dados de geobarometria em anfibólio indicam uma pressão de cerca de 3 kbar, que corresponde a uma profundidade de 10 km e, portanto uma colocação em ambiente epizonal. Os efeitos de metamorfismo de contato registrados nas rochas metabásicas do GB de Identidade são coerentes com esta afirmativa e sugerem uma colocação não diapírica para este granitóide. Algumas características estruturais do Gxg, tais como a variação na intensidade e na atitude da foliação e a deformação nas suas encaixantes sugerem uma colocação por bailooning. A colocação do Thaf deu-se provavelmente por diapirismo. O CTc é um típico granitóide TTG da série trondhjemítica. Entretanto, o comportamento dos elementos litófilos e, sobretudo, terras raras, revelou duas assinaturas geoquímicas distintas em rochas desta unidade: grupos com altas e baixas razões Lan/Ybn. O GDrm ao contrário, segue o trend cálcico-alcalino, é comparativamente rico em MgO e mostra características distintas das associações TTG. É similar aos granodioritos ricos em Mg de Suítes Sanukitóides. O THaf, apesar de mais novo, mostra-se similar ao CTc, no sentido de possuir afinidade com os granitóides TTG, No entanto difere do CTc, pelo enriquecimento relativo em K20. O Gxg mostra afinidade geoquímica com os granitóides cálcico-alcalinos fortemente fracionados, onde o alto K2O e padrão de terras raras são indicativos de uma origem crustal. O líquido gerador das rochas dominantes no CTc (altas razões Lan/Ybn), seria oriundo da fusão de metabasaltos não enriquecidos, previamente transformados em granada-anfibolito. Fontes com composição similar à da média de metabasaltos arqueanos ou a dos metabasaltos de Identidade seriam adequadas para gerar tal líquido, porém a partir de diferentes graus de fusão, respectivamente 25-30% ou 10-15%. O líquido formador dos tonalitos com baixas razões Lan/Ybn, poderia também ser derivado de uma fonte similar às mencionadas, porém sem granada. Os dados de Nd indicam para o primeiro grupo fonte mantélica com pouco tempo de residência crustal. Uma amostra isolada do segundo grupo e um enclave no Gxg apresentaram valores de εNd negativos e idades TDM >3,2 Ga, sugerindo participação de uma fonte mais antiga e com maior tempo de residência crustal. O THaf pode ter sido gerado a partir de 5 a 10% de fusão de metabasaltos de composição química similar aos de Identidade, transformados em granada-anfibolito. Os líquidos do Gxg tiveram origem a partir de diferentes graus de fusão de fonte de composição similar aos granitóides TTG mais antigos. A evolução geológica arqueana de Xinguara ocorreu em duas fases. A primeira deu-se no período de <2,95 a 2,91 Ga e revela analogias com a evolução dos crátons Pilbara (Autrália) e Dharwar (Índia). A segunda fase ocorreu a partir de 2,88 Ga, quando há fortes evidências de mudanças no comportamento da crosta. Neste estágio se daria o espessamento e estabilização da mesma, o que a tornaria mais rígida. A partir daí os processos de convergência e subducção de placas foram mais efetivos. Neste contexto, a fusão do manto enriquecido geraria o magma parental do GDrm. A fusão de granada-anfibolito da crosta oceânica subductante geraria o magma do THaf. A ascensão dos magmas do THaf e do GDrm forneceria calor para a fusão dos granitóides TTG da base da crosta e geração dos magmas graníticos do pluton Xinguara.Tese Acesso aberto (Open Access) Greisens e Epi-sienitos potássicos associados ao granito água boa, Pitanga (AM): um estudo dos processos hidrotermais geradores de mineralizações estaníferas(Universidade Federal do Pará, 2002-10-23) BORGES, Régis Munhoz Krás; DALL'AGNOL, Roberto; http://lattes.cnpq.br/2158196443144675Na borda oeste do pluton Água Boa, na mina Pitinga (AM), ocorrem três tipos de greisens estaníferos associados espacialmente à fácies granito rapakivi: greisen 1 (Gs1), constituído principalmente por quartzo, topázio, siderofilita marrom e esfalerita; greisen 2 (Gs2), formado essencialmente por quartzo, fengita e clorita; greisen 3 (Gs3), constituído essencialmente por quartzo, fluorita e fengita, com quantidades subordinadas de siderofilita verde. Além disso, associado ao Gs2, ocorre um epi-sienito potássico (EpSK), formado pela dessilicificação do granito rapakivi. Apesar de suas diferenças composicionais e petrográficas, os greisens e epi-sienitos se formaram a partir do mesmo protólito granítico, um hornblenda-biotita-álcali-feldspato-granito a sienogranito. O Gsl apresenta uma zonação interna definida pela predominância de determinados minerais. Assim, ao longo de um halo de alteração contínuo, a zona rica em siderofilita (ZS) está em contato com o granito greisenizado, enquanto que a zona rica em topázio (ZT) situa-se mais afastada do granito. A siderofilita marrom apresenta teores moderados em AI, e sua variação composicional ocorre pela substituição de Fe+2 por A1+3 e Li nos sítios octaédricos, com geração de vacâncias, e concomitante substituição de A1+3por Si+4nos sítios tetraédricos. No Gs2, as zonas mineralógicas estão separadas espacialmente, em níveis onde predomina a fengita (ZF) ou a clorita (ZC). A fengita apresenta um mecanismo evolutivo em que o viAl é substituído por Fe+2 nos sítios octaédricos, com enriquecimento acoplado de Si+4 às expensas de A1+3 nos sítios tetraédricos. Seus teores de Li calculado são ainda menores do que aqueles estimados para a siderofilita do Gs1. No Gs3, a siderofilita verde é composicionalmente mais rica em VIAl e mais pobre em F do que a siderofilita do Gsl, enquanto que a fengita subdivide-se em dois tipos composicionais: uma fengita mais aluminosa, pobre em Fe+2, e uma mais rica em F e Fe+2, que segue os mesmos trends evolutivos apresentados pela fengita do Gs2. A clorita dos três greisens é extremamente rica em Fe, do tipo dafnita. Na sua estrutura, a substituição de 'JIA' por cátions R+2 causa um aumento na ocupação tetraédrica do Si. As cloritas mais aluminosas apresentam as mais altas temperaturas de formação, segundo os geotermômetros clássicos propostos na literatura. Os greisens são resultantes de diferentes processos de interação entre três fluidos principais: (1) fluido aquo-carbônico de baixa salinidade, rico em F, com temperaturas iniciais entre 400° e 350°C, presente durante a formação do Gs1 e Gs3; (2) fluido aquoso de baixa salinidade, e temperatura ao redor de 300°C e que, ao longo de um processo contínuo de salinização, gera um fluido residual de salinidade moderada a alta, com temperaturas entre 200° e 100°C, presente durante a formação do Gs2 e no estágio de silicificação do EpSK; (3) fluido aquoso de baixa salinidade, com temperaturas entre 2000 e 150°C, e que interagiu com os outros dois fluidos, contribuindo, em diferentes graus, para a formação de praticamente todas as rochas hidrotermais. Os dois primeiros fluidos aparentemente têm origem ortomagmática, enquanto que o último tem características de fluido superficial (meteórico?). Além destes, considera-se que o fluido responsável pelo estágio inicial do processo de epi-sienitização não ficou registrado nas amostras estudadas. Estes fluidos foram aprisionados em condições de pressão ao redor de 1 Kb, compatível com níveis crustais rasos, como parece ser o caso dos granitos estaniferos de Pitinga. Tanto a epi-sienitização quanto a greisenização ocorreram sem mudanças no volume original do granito, enquanto as variações de massa decorrentes das transformações causaram as diferenças nas densidades das rochas alteradas. A greisenização causou uma grande remoção em Na2O e K2O, enquanto que SiO2 permaneceu imóvel no Gsl e foi parcialmente removido no Gs2. O Al2O3 sofreu perdas durante a formação do Gs2, mas foi parcialmente adicionado ao Gsl. Os responsáveis pelo aumento de massa durante a greisenização foram Fe2O3 (Fe total), Sn, S, voláteis (P.F.) e F. No Gsl, a diminuição da atividade do F e o aumento da fO2 durante o resfriamento, causaram mudanças químicas nos fluidos, e a conseqüente diferenciação entre a ZT, nas porções mais internas dos condutos/fraturas, e a ZS, mais próxima do granito encaixante. O Gs3 foi formado sob condições mais oxidantes e por fluidos mais pobres em F do que aqueles aprisionados na ZS. A geração de cavidades de dissolução durante a epi-sienitização aumentou a permeabilidade das rochas alteradas, propiciando o aumento das razões fluido-rocha no sitio de formação do EpSK e Gs2. A interação dos fluidos aquosos com os feldspatos do EpSK, durante a formação do Gs2, causou um aumento contínuo na sua salinidade. A ZF foi formada nos estágios mais precoces desta interação, sob temperaturas relativamente mais altas, enquanto que a ZC é um produto dos fluidos aquosos residuais, mais salinos e mais frios. Estes fluidos residuais também foram aprisionados no quartzo de preenchimento de cavidades no EpSK durante o processo de silicificação tardia. Desta forma, os greisens e epi-sienitos potássicos foram formados pela interação entre, pelo menos, três fluidos de origem aparentemente independente, a partir do mesmo protólito granítico, em condições de crosta rasa. As variações nas condições de fO2, atividade do F e salinidade, durante o resfriamento do sistema hidrotermal, e contrastes nas razões fluido-rocha causadas por diferenças de permeabilidade, foram fatores fundamentais para a diferenciação dos greisens. Estes fatores influenciaram sobremaneira as mudanças composicionais dos fluidos e foram responsáveis pela precipitação de cassiterita e sulfetos nos greisens, e pelo enriquecimento em Sn e S durante a greisenização tardia dos epi-sienitos potássicos.Tese Acesso aberto (Open Access) Magmatismo granitóide arqueano da área de Canaã dos Carajás: implicações para a evolução crustal da Província Carajás.(Universidade Federal do Pará, 2011-08-16) FEIO, Gilmara Regina Lima; DALL'AGNOL, Roberto; http://lattes.cnpq.br/2158196443144675; 2158196443144675Mapeamento geológico e estudos geocronológicos, geoquímicos e petrológicos realizados nos granitóides arqueanos da área de Canaã dos Carajás na Província Carajás do Cráton Amazônico permitiram a definição de novas unidades granitóides que vieram a substituir inteiramente o Complexo Xingu, outrora dominante naquela área. Quatro grandes eventos magmáticos foram identificados, três de idade mesoarqueana e um de idade neoarqueana: (1) em 3,05-3,0 Ga ocorreu a formação do protólito do Complexo Pium e de rochas com idades similares cuja existência foi deduzida somente a partir de zircões herdados encontrados em diversas unidades; (2) em 2,96-2,93 Ga deu-se a cristalização do Granito Canaã dos Carajás e a formação das rochas mais antigas do Trondhjemito Rio Verde; (3) em 2,87-2,83 Ga foram formados o Complexo Tonalítico Bacaba, o Trondhjemito Rio Verde e os granitos Bom Jesus, Cruzadão e Serra Dourada; (4) no Neoarqueano, em 2,75-2,73 Ga foram originados as suítes Planalto e Pedra Branca e rochas charnoquíticas. Em termos geoquímicos foram distinguidos dois grandes grupos de granitóides: (A) As unidades tonalítico-trodhjemíticas que englobam o Complexo Tonalítico Bacaba e a Suíte Pedra Branca, que são geoquimicamente distintos dos típicos TTG arqueanos, e o Trondhjemito Rio Verde similar às séries TTG; (B) As unidades graníticas que cobrem mais de 60% da superfície de Canaã e incluem cinco unidades distintas. Os granitos mesoarqueanos Canaã dos Carajás, Bom Jesus, Cruzadão e Serra Dourada são compostos essencialmente de biotita leucomonzogranitos, enquanto que as rochas dominantes na Suíte neoarqueana Planalto são biotita-hornblenda monzogranitos a sienogranitos com conteúdo modal de máficos variando de 5% a 20%. Os granitos Canaã dos Carajás e Bom Jesus e a variedade do Granito Cruzadão com razões La/Yb mais elevadas são geoquimicamente similares aos granitos cálcio-alcalinos, enquanto que as outras variedades do Granito Cruzadão são transicionais entre granitos cálcio-alcalinos e alcalinos. O Granito Serra Dourada tem um caráter ambíguo em termos geoquímicos, pois apresenta similaridades ora com granitos cálcio-alcalinos, ora com os peraluminosos. Os granitos Canaã dos Carajás e Bom Jesus de Canaã são similares aos granitos com Alto-Ca, enquanto que os granitos Cruzadão e Serra Dourada se assemelham mais aos granitos Baixo-Ca do Cráton Yilgarn. As características geoquímicas dos granitos mesoarqueanos de Canaã se aproximam daquelas dos biotita granitos arqueanos do Cráton Dharwar, mas os últimos são enriquecidos em HFSE e ETRP quando comparados com os granitos mesoarqueanos de Canaã. As variações acentuadas das razões Sr/Y e (La/Yb)N observadas nos granitos de Canaã devem refletir dominantemente diferenças composicionais nas fontes dos magmas graníticos com efeito subordinado da pressão. O modelamento geoquímico sugere que a fusão parcial de uma fonte similar em composição a média de basaltos do Proterozóico Inferior ou a média da crosta continental inferior poderia gerar os magmas formadores do Granito Bom Jesus e da variedade do Granito Cruzadão com razão (La/Yb)N mais elevada. O resíduo de fusão deveria conter proporções variáveis de plagioclásio, hornblenda, granada, clinopiroxênio ± ortopiroxênio e ilmenita. Nos demais granitos de Canaã, plagioclásio foi a fase dominante, a granada estava muito provavelmente ausente e a hornblenda teve influência limitada no resíduo de fusão. Uma pressão de 8 a 10 kbar e um ambiente crustal foi estimada para a geração dos magmas que apresentaram granada como uma das fases residuais tais como aqueles dos granitos Bom Jesus e similares. Os granitos neoarqueanos da Suíte Planalto são ferrosos e similares geoquimicamente aos granitos reduzidos do tipo-A. Porém, o ambiente tectônico e a associação entre a Suíte Planalto e rochas charnoquíticas levou-nos a propor que tais granitos sejam classificados como biotita-hornblenda granitos hidratados associados às séries charnoquiticas. A Suíte Planalto derivou da fusão parcial de rochas máficas a intermediárias toleiíticas com ortopiroxênio similares àquelas do Complexo Pium. O magmatismo granitóide arqueano de Canaã difere significativamente daquele encontrado na maioria dos crátons arqueanos, incluindo o terreno Rio Maria, porque o magmatismo TTG não é abundante, rochas sanukitóides não foram identificadas e rochas graníticas são dominantes. A Suíte Planalto não possui equivalente no terreno mesoarqueano de Rio Maria, nem tampouco aparentemente nos crátons de Yilgarn e Dharwar. Os contrastes entre Canaã e o Terreno Granito-Greenstone de Rio Maria não favorecem a hipótese de uma evolução tectônica idêntica ou muito similar para estes dois domínios arqueanos da Província Carajás. A crosta arqueana de Canaã não mostra caráter juvenil e a curva de evolução do Nd sugere a existência de uma crosta um pouco mais antiga na área de Canaã em comparação ao Terreno Rio Maria. A crosta de Canaã existe pelo menos desde o Mesoarqueano (ca. 3.2 a 3.0 Ga) e foi fortemente retrabalhada durante o Neoarqueano (2.75 a 2.70 Ga). Um terreno similar ao da crosta Mesoarqueana de Canaã ou até mesmo a extensão da mesma deve corresponder ao substrato da Bacia Carajás; e o denominado subdomínio de ‘Transição’ apresentou, provavelmente, uma evolução distinta daquela do Terreno Rio Maria. A evolução Neoarqueana da Província Carajás foi marcada pela ascensão do manto astenosférico em um ambiente extensional, que provocou a formação da Bacia Carajás. Entre 2.73-2.7 Ga, o calor gerado pela colocação de magmas máficos induziu a fusão parcial da crosta inferior máfica e intermediária originando os granitóides das suítes Planalto e Pedra Branca, e os charnoquitos. A íntima relação entre a suíte Planalto e as rochas charnoquíticas sugerem similaridades de evolução com o magmatismo formado em temperaturas elevadas comumente encontradas em limites de blocos tectônicos ou em sua zona de interação.Tese Acesso aberto (Open Access) Modelos de evolução e colocação dos grantitos paleoproterozóicos da Suíte Jamon, SE do Cráton Amazônico(Universidade Federal do Pará, 2006-10-27) OLIVEIRA, Davis Carvalho de; DALL'AGNOL, Roberto; http://lattes.cnpq.br/2158196443144675A Suite Jamon de 1.88 Ga e diques associados são intrusivos em granitóides arqueanos (2.97-2.86 Ga) do Terreno Granito-Greenstone de Rio Maria a sul da Serra dos Carajás, no SE do Craton Amazônico. Aspectos petrográficos e geoquímicos associados a estudos de susceptibilidade magnética e aerogeofísica mostraram que os plútons da Suíte Jamon são normalmente zonados. Relações de magma mingling indicam injeções múltiplas de magma na construção dos plutons. Eles foram formados, em geral, por dois pulsos magmáticos: (1) um primeiro pulso magmático foi fracionado in situ após a colocação em níveis crustais rasos gerando uma série de monzogranitos equigranulares grossos com proporções variáveis de biotita e hornblenda; (2) um segundo pulso, ligeiramente mais jovem, localizado nas porções centrais dos plutons, é composto de um magma mais evoluído de onde leucogranitos equigranulares derivaram. Intrusões anelares são identificadas no plúton Redenção. O zoneamento magmático é marcado por um decréscimo do conteúdo modal de minerais máficos, das razões plagioclásio/Kfeldspato e anfibólio/biotita e do conteúdo de anortita do plagioclásio. O conteúdo de TiO2, MgO, FeOt, CaO, P2O5, Ba, Sr e Zr diminuem e os de SiO2, K2O e Rb aumentam na mesma direção. A diferenciação magmática foi controlada pelo fracionamento das fases minerais cristalizadas precocemente, incluindo anfibólio ± clinopiroxênio, andesina-oligoclásio cálcico, ilmenita, magnetita, apatita e zircão. A Suíte Jamon é subalcalina, metaluminosa a peraluminosa e possui assinatura geoquímica de granitos intraplaca do tipo-A. A ocorrência de magnetita e titanita, bem como os altos valores de susceptibilidade magnética demonstra que os granitos da Suíte Jamon foram formados em condições oxidantes. Granitos tipo-A oxidados possuem altas razões de FeOt/(FeOt+MgO), TiO2/MgO e K2O/Na2O e baixos valores de CaO e Al2O3 comparado aos granitos cálcio-alcalinos. Porém, o caráter oxidado da Suíte Jamon são similares aos granitos mesoproterozóicos do tipo-A da série magnetita do SW da América do Norte e difere dos granitos rapakivi reduzidos do Escudo da Fennoscandia e das suítes Serra dos Carajás e Velho Guilherme da Província Mineral de Carajás em vários aspectos, provavelmente pela diferença de fontes magmáticas. A Suíte Jamon cristalizou próximo ou levemente acima do tampão óxido níquel-níquel (NNO) e uma fonte biotite-honblende quartzo-dioritica sanukitoid arquena foi proposta para os magmas oxizidados da Suíte Jamon. O estudo gravimétrico indica que os plútons Redenção e Bannach são intrusões tabulares com ~ 6.0 km e ~2.2 km de espessura máxima, respectivamente. Estes plútons possuem dimensões lacolíticas e são similares neste aspecto aos clássicos plútons graníticos rapakivi. Os dados gravimétricos sugerem que o crescimento da parte norte do pluton Bannach resultou da amalgamação de plútons tabulares menores intrusivos em seqüência de noroeste a sudeste. Os plútons da Suíte Jamon foram colocados em um ambiente tectônico extensional com o esforço seguindo o trend NNE-SSW to ENE-WSW, como indicado pela ocorrência de enxames de diques de diabásio e granito pórfiro, de orientação WNW-ESE a NNW-SSE e coexistentes com a Suíte Jamon. Os plutons graníticos paleoproterozóicos e stocks de Carajás estão dispostos ao longo de um cinturão que segue o trend geral definido pelos diques. A geometria tabular dos batólitos estudados e o alto contraste de viscosidade entre os granitos e suas rochas encaixantes arquenas pode ser explicado pelo transporte de magma via diques. Os mecanismos responsáveis pela colocação dos plutons graníticos, em particular de plutons anorogênicos do tipo-A, são ainda discutidos. Desse modo, estudo da trama magnética através de medidas de anisotropia de susceptibilidade magnética (ASM) tem sido aplicado no plúton Redenção na tentativa de compreender a sua história de colocação. Os altos valores de suscetibilidade magnética (1 x 10-3 SI to 54 x 10-3 SI) indicam que a trama magnética é controlada principalmente pelos minerais ferromagnéticos. Os baixos valores do grau de anisotropia (P') e os aspectos texturais (ausência de feições deformacionais) indicam que a trama magnética é de origem magmática. A trama magnética é bem definida e caracterizada por uma foliação concêntrica de alto ângulo associada com lineações com mergulho moderado a fraco. A falta de uma trama linear unidirecional bem definida na escala do plúton sugere uma influência reduzida ou nula dos esforços (stresses) regionais durante a colocação do corpo granítico. A forma tabular e a ocorrência de foliações magnéticas de alto ângulo são interpretadas principalmente como resultado de: (1) ascensão vertical de magmas através de diques alimentadores noroeste-sudeste e acomodação pela translação ao longo dos planos da foliação regional E-W; (2) mudança do fluxo vertical para um espalhamento lateral do magma, com subsidência do assoalho criando espaço para injeção de pulsos magmáticos sucessivos; (3) expansão in situ da câmara magmática em resposta às intrusões mais tardias na porção central, acompanhada pela injeção do magma residual através de fraturas anelares.Tese Acesso aberto (Open Access) Petrogênese e evolução magmática da Suíte Sanukitóide Rio Maria, Terreno Granito – Greenstone de Rio Maria, Cráton Amazônico(Universidade Federal do Pará, 2009-08-25) OLIVEIRA, Marcelo Augusto de; DALL'AGNOL, Roberto; http://lattes.cnpq.br/2158196443144675; 2158196443144675Rochas que compõem a Suíte Sanukitóide arqueana Rio Maria (2,87 Ga) estão expostas em vários domínios do Terreno Granito-Greenstone de Rio Maria, sudeste do Cráton Amazônico. As rochas da suíte são intrusivas em greenstone-belts do Supergrupo Andorinhas, nos tonalitos Arco Verde, Mariazinha e Caracol, e no Trondhjemito Mogno, enquanto que leucogranitos potássicos de afinidade cálcico-alcalina, o Trondhjemito Água Fria e granitos paleoproterozóicos da Suíte Jamon são intrusivos nas rochas da Suíte Rio Maria. As rochas dominantes da suíte têm composições granodioríticas com monzogranitos subordinados, e menores proporções de quartzo-dioritos ou quartzo-monzodioritos (rochas intermediárias), além de rochas acamadadas e enclaves máficos. Rochas da Suíte Rio Maria apresentam claramente características de séries sanukitóides (alto #Mg, elevados conteúdos de Cr e Ni, enriquecimento em elementos terras raras leves e altos conteúdos de Ba e Sr, comparados as típicas séries cálcico-alcalinas). Os contrastes geoquímicos significativos entre as diferentes ocorrências de granodioritos que compõem a suíte sugerem que a unidade anteriormente denominada Granodiorito Rio Maria, corresponde realmente a uma suíte de rochas predominantemente granodioríticas, as quais derivaram a partir de magmas similares, porém distintos. Apesar das amplas similaridades geoquímicas, granodioritos, rochas intermediárias e enclaves máficos mostram algumas diferenças significantes em seus padrões de elementos terras raras e no comportamento de Rb, Ba, Sr e Y. Os granodioritos e rochas intermediárias não são relacionados por processos de cristalização fracionada e a evolução interna das rochas intermediárias foi comandada pelo fracionamento de anfibólio + biotita ± apatita, enquanto que os granodioritos evoluíram pelo fracionamento de plagioclásio + anfibólio ± biotita. As rochas acamadadas devem ter sido derivadas a partir do magma granodiorítico pela acumulação de 50% de anfibólio, no caso dos níveis mais ricos em material cúmulus, e 30% de anfibólio ± plagioclásio, no caso dos níveis ricos em material intercúmulus. Dados geoquímicos e testes de modelamento sugerem que os magmas granodiorítico e do enclave máfico foram originados em diferentes profundidades e devem ter sofrido processo de “mingling” durante a ascensão e final da colocação, pois só uma interação limitada poderia explicar o comportamento geoquímico relativamente uniforme desses dois grupos de rochas e os trends distintos mostrados por cada grupo em diferentes diagramas modais e geoquímicos. Esses contrastes entre granodioritos e enclaves máficos são refletidos no comportamento de Sr e Y, os quais são geralmente admitidos como bons indicadores das condições de pressão reinantes quando da formação dos magmas. O comportamento desses elementos, observados em rochas sanukitóides de diferentes terrenos arqueanos do mundo, indica que os contrastes observados entre as séries sanukitóides granodioríticas (granodioritos) e monzoníticas (enclaves máficos) são características gerais dessas rochas e suas origens dependem fortemente da condição de pressão quando da geração dos magmas e, como conseqüência, que a natureza das séries pode indicar a profundidade aproximada de geração de seu magma. A petrogênese da Suíte Rio Maria requer a fusão de um manto, previamente metassomatizado pela adição de ~30% de líquido TTG para gerar os magmas granodiorítico (21% de fusão) e intermediário (24% de fusão), e ~20% de líquido TTG no caso do magma do enclavo máfico (9% de fusão). Os testes de modelamento geoquímico indicam que um ambiente de subducção ativo esteve presente no Terreno Granito-Greenstone de Rio Maria entre 2,98 e 2,92 Ga para gerar, ao menos em parte, os magmas TTGs e produzir o metassomatismo do manto por esses magmas, antes do processo responsável pela origem dos magmas sanukitóides. Um evento tectonotermal em 2,87 Ga, possivelmente relacionado à pluma do manto, causaria a fusão parcial do manto metassomatizado e geraria os magmas sanukitóides Rio Maria. Nas rochas da Suíte Rio Maria, a assembléia mineral é dominada por anfibólio, plagioclásio, biotita e epidoto, todos de provável origem magmática, sendo que piroxênio nunca foi identificado. Critérios texturais e composicionais indicaram que o anfibólio foi a fase liquidus durante a cristalização dos magmas Rio Maria. Esses magmas foram ricos em água (H2O > 7%), com temperaturas de cristalização entre 950 e 680° C. As razões Mg/(Mg+Fe) de anfibólios e biotitas indicaram condições oxidantes, entre NNO + 0,5 e NNO + 2,5, similares as indicadas pelos teores de pistacita em cristais de epidotos magmáticos. Análises de conteúdos de alumínio em anfibólios, indicaram pressões entre 700 e 1000 MPa para o início da cristalização e, de aproximadamente 200 Mpa para o final da colocação dos magmas Rio Maria. Os magmas sanukitóides do Terreno Granito-Greenstone de Rio Maria são oxidantes e ricos em água, características de magmas de arcos modernos, o que sugerem, assim como resultados de modelamento geoquímico, bem como aspectos geológicos e petrográficos, que eles podem ter sido formados em um ambiente geodinâmico similar as zonas de subducção modernas.Tese Acesso aberto (Open Access) Petrologia de granitos alcalinos com alto flúor mineralizados em metais raros: o exemplo do Albita-granito da mina Pitinga, Amazonas, Brasil(Universidade Federal do Pará, 2000-11-23) COSTI, Hilton Túlio; DALL'AGNOL, Roberto; http://lattes.cnpq.br/2158196443144675Os depósitos minerais ocorrentes na mina Pitinga relacionam-se aos granitos Proterozóicos Água Boa e Madeira, os quais são intrusivos em rochas vulcânicas ácidas do Grupo Iricoumé, de idade 207Pb/206Pb de 1888 ± 3 Ma. O granito Madeira é composto por quatro fácies. As facies precoces são um anfibólio-biotita-sienogranito porfirítico metaluminoso, localmente com textura rapakivi, que mostra idade 207Pb/206Pb de 1824 ± 2 Ma, e biotita-feldspato alcalino-granito equigranular peraluminoso, com idade 207Pb/206Pb de 1822 ± 1 Ma. As fácies tardias são um feldspato alcalino-granito hipersolvus porfirítico (FAGHP) com afinidades peralcalinas e idade 207Pb/206Pb de 1818 ± 2 Ma, e um albita-granito subsolvus. As relações de campo indicam que essas duas unidades interagiram e foram colocadas simultaneamente, admitindo-se para o albita-granito uma idade similar à do granito hipersolvus. O albita-granito (ABG) é composto por duas fácies. A fácies predominante é de cor acinzentada, peralcalina, denominada albita-granito de núcleo (ABGn). O ABGn é composto essencialmente por albita, quartzo, feldspato potássico e, subordinadamente, por criolita, zircão, polilitionita, riebeckita, pirocloro, mica escura rica em Fe, cassiterita e magnetita. As proporções modais das fases essenciais são aproximadamente equivalentes, sugerindo a cristalização do ABGn a partir de um líquido de composição cotética ou mínima. A origem magmática também é indicada por texturas microscópicas do tipo snowball, pela presença local de texturas de fluxo e pela sua expressiva homogeneidade geoquímica. O ABGn transiciona para uma rocha avermelhada, geoquimicamente peraluminosa, definida como albita-granito de borda (ABGb), que ocorre ao longo dos contatos do ABG com as rochas encaixantes. O ABGb é formado essencialmente por quartzo, feldspato potássico e albita, com fluorita, zircão, clorita, cassiterita, hematita e columbita. As proporções modais das fases essenciais são dispersas, com crescimento, em relação ao ABGn, no conteúdo de quartzo e redução no de albita. O ABGb é interpretado como originado por autometassomatismo do ABGn, que teve a sua mineralogia peralcalina modificada por ação de fluidos residuais. Evidências texturais indicativas de dissolução de fases primárias, formando cavidades preenchidas por fases tardias, bem como a substituição de criolita, micas e pirocloro apoiam essa interpretação. As análises por microssonda eletrônica indicam que as composições dos feldspatos do ABGn aproximam-se das dos termos finais albita e ortoclásio. Os feldspatos potássicos (Or —98%) não são pertíticos e apresentam altos teores de Rb2O (-2%) e Fe2O3 (-0,6%). As albitas (Ab —99%) mostram teores anomalamente altos de Fe2O3 (-1%) e relativamente baixos de Al2O3. Essas características composicionais indicam: (1) baixas temperaturas de cristalização para o ABGn, provavelmente inferiores a 500°C; (2) deficiência em Al2O3 no líquido a partir do qual o ABGn cristalizou. São reconhecidos dois tipos de micas no ABGb. As mais abundantes são Zn-Rb-polilitionitas, enquanto o segundo tipo é definido por micas com altos Fe, Zn, F, Rb e Li. Estas últimas apresentam Fe3+ como componente tetraédrico e baixos teores de Al2O3, sendo provisoriamente classificadas como micas tetraferríferas litiníferas (MTL). A ocorrência de mineralizações de Sn e metais raros e as composições químicas mostradas pelas micas e feldspatos, indicam que o líquido gerador do ABGn era geoquimicamente similar aos dos formadores de sistemas pegmatíticos portadores de metais raros. Os elevados teores de Fe2O3 dos feldspatos e MTLs, além da presença de magnetita, indicam que o ABG cristalizou sob condições de Fo2- relativamente elevada (~NNO). O ABGn apresenta teores muito elevados de F, Na2O, Sn, Nb, Zr, U, Th, Zn, Li e Rb, além de teores muito baixos ou nulos de CaO, MgO, TiO2, P2O5, Ba e Sr. Os valores extremos das razões K/Rb e Rb/Sr refletem o grau de fracionamento muito avançado do líquido a partir do qual o ABG cristalizou. Os padrões em "asa de gaivota" dos ETR, além das baixas razões LaN/YbN, indicam a forte influência do F durante a evolução magmática do ABGn. Os ETR mostram, internamente, se arranjam em "tetrads", indicando que seus mecanismos de fracionamento e distribuição foram controlados por processos similares aos ocorrentes em sistemas graníticos muito evoluídos. Os isótopos de Nd indicam protólitos paleoproterozóicos crustais para as fácies precoces do granito Madeira, que apresentam valores de εNd ligeiramente negativos. As amostras do ABGn e uma amostra do FAGHP apresentam valores baixos, porém positivos de εNd. Estes dados podem ser interpretados como: (1) indicando que o ABG e o FAGHP têm fontes distintas daquelas das fácies precedentes; (2) que o sistema isotópico Sm-Nd do ABG e do FAGHP foi perturbado. Finalmente, um desvio no sentido de valores de εNd extremamente negativos é mostrado pelas amostras do ABGb e por uma amostra hidrotermalizada do FAGHP . Isso demostra que os processos hidrotermais que afetaram o ABGb e, localmente, o FAGHP , causaram profundas perturbações no sistema isotópico Sm-Nd dessas rochas. O modelo petrogenético adotado, baseado em experimentos realizados no sistema albita-granito – H2O - HF a 1 Kbar, sugere que o ABG foi originado a partir de líquidos residuais derivados de magmas inicialmente ricos em F e empobrecidos em MgO, TiO2 e principalmente CaO. A concentração de F nos líquidos finais rebaixa fortemente a viscosidade, densidade e o solidus do sistema, causando uma também extrema diferenciação desses líquidos, que passam a ter uma composição similar a de pegmatitos enriquecidos em metais raros. O aumento do teor de H2O com o avanço da cristalização leva a separação de fluídos aquosos, responsáveis pela formação das rochas dos níveis pegmatíticos no interior do ABG, enquanto a fase residual rica em F geraria os bolsões e veios de criolita maciça associados a eles.Tese Acesso aberto (Open Access) Petrologia dos granitóides brasilianos da região de Caraúbas-Umarizal, oeste do Rio Grande do Norte(Universidade Federal do Pará, 1993-05-07) GALINDO, Antonio Carlos; MCREATH, Ian; http://lattes.cnpq.br/5299851252167587; DALL'AGNOL, Roberto; http://lattes.cnpq.br/2158196443144675O mapeamento da área de Caraúbas-Umarizal, no oeste do Rio Grande do Norte, levou à identificação de seis grandes corpos granitóides relacionados ao Ciclo Brasiliano: granitóides Umarizal, Tourão, Caraúbas, Prado, Complexo Serra do Lima e Quixaba. Todos os granitóides, à exceção do Granitóide Umarizal, encontram-se deformados, exibindo uma foliação de "trend" dominantemente NE, com mergulhos principalmente para SE. Este "fabric" reflete a tectônica brasiliana principal. A deformação frágil-ductil é representada por fraturas, falhas e zonas de cisalhamento, que são as feições estruturais mais marcantes da área. Dentre esses cisalhamentos destaca-se a Zona de Cisalhamento Portalegre-ZCP, com mais de 200 km de extensão e até 2 km de largura. A colocação desses granitóides foi condicionada e em grande parte controlada pelas zonas de cisalhamento. A presença constante de estruturas do tipo "brechas magmáticas" no Granitóide Umarizal sugere que o mesmo intrudiu urna crosta já fria. Para o Granitóide Tourão e tipos similares admite-se uma colocação por diapirismo seguido de baloneamento. O Granitóide Umarizal é dominado por rochas de textura grossa e de composição quartzo-monzonitica a quartzo-sienitica, com biotita, anfibólio e clinopiroxênio em proporções variáveis, acompanhados por faialita e mais raramente ortopiroxênio. O Granitóide Quixaba é de textura grossa a muito grossa, com composição dominantemente quartzo-monzodioritica e quartzo-monzonítica. Os granitóides Tourão, Caraúbas, Prado e Complexo Serra do Lima apresentam uma grande identidade entre si. São representados dominantemente por monzogranitos porfiríticos com megacristais de feldspato potássico de até 6 cm e, subordinadamente, por leuco-microgranitos. Ao Granitóide Prado associa-se urna fácies de natureza dioritica, a qual ocorre principalmente como encraves nos granitos. Geoquimicamente esses seis granitóides se agrupam em quatro grandes familias: Granitóide Quixaba, Associação Dioritica do Prado, Granitóide Umarizal e o conjunto dos granitóides Tourão, Caraúbas, Prado (fácies granítica) e Complexo Serra do Lima. Os dois primeiros apresentam baixa sílica e urna assinatura geoquímica similar à de rochas shoshoníticas plutônicas, porém são de caráter relativamente mais alcalino do que o normal para esse tipo de associação. Os demais possuem sílica intermediária a alta. O granitóide Umarizal é de afinidade alcalina com muitas características de granitos do tipo-A. Os demais granitóides mostram assinatura geoquímica similar a rochas das associações subalcalinas ácidas. Datações geocronológicas pelo método Rb-Sr em rocha total indicam que, dentre os granitóides brasilianos os granitóides Caraúbas e Prado (630 ± 23 Ma) são os mais antigos da área, seguidos pelos granitóides Tourão e o Complexo Serra do Lima (600 + 7 - 575 ± 15 Ma) e, finalmente, pelo Granitóide Umarizal (545 + 7 Ma). As razões isotópicas iniciais 87Sr/86Sr são superiores a 0,708, indicando uma fonte dominantemente crustal para os magmas desses granitóides. O Granitóide Quixaba e a associação diorítica do Prado mostram características geoquímicas de fonte mantélica. Com base na presenca de clinopiroxênio e faialita no Granitóide Umarizal e de clivo e ortopiroxênio no Granitóide Quixaba, estima-se que o inicio da cristalização desses dois granitóides deu-se em temperaturas próximas de 900 °C, sendo as pressões provavelmente da ordem de 8 a 9 kbar. As condições de fugacidade de oxigênio durante a cristalização foram relativamente baixas, sendo controladas no caso do Granitóide Umarizal pelo tampão FMQ, e possivelmente também para o caso Granitóide Quixaba. Admite-se que o magma gerador do Granitóide Umarizal seria derivado da fusão de rochas de composição mangerítica, ao passo que os magmas formadores do granitóides Tourão, Caraúbas, Prado e Complexo Serra do Lima, proviriam de uma fonte monzonítica. Cristalização fracionada foi o processo dominante na evolução dos magmas desses diversos granitóides. O Granitóide Umarizal encontra um único tipo similar descrito na Província Borborema, que é o Granito Meruoca, no Ceará, que também apresenta uma fácies com faialita, porém há diferencas significativas em termos petrográficos e geoquímicos entre ambos. Associações shoshoníticas plutônicas são descritas com freqüência no âmbito dessa província, porém composicionalmente elas são distintas do Granitóide Quixaba. Os granitóides Tourão, Caraúbas, Prado e Complexo Serra do Lima, encontram similares amplamente distribuídos na Província Borborema, constituindo-se nos tipos mais freqüentes de granitóides brasilianos.Tese Acesso aberto (Open Access) Petrologia experimental e química mineral das suítes Neoarqueanas Vila Jussara e Planalto, Província Carajás, Amazônia, Brasil(Universidade Federal do Pará, 2023-03-20) CUNHA, Ingrid Roberta Viana da; SCAILLET, Bruno; DALL'AGNOL, Roberto; http://lattes.cnpq.br/2158196443144675Na Província Carajás (PC), durante os estágios finais do Neoarqueano (2.75-2.73 Ga), foram formados no Domínio Sapucaia e Canaã dos Carajás, granitoides representados respectivamente pelas Suítes Vila Jussara e Planalto. Tais suítes apresentam caráter metaluminoso e afinidade geoquímica com granitos tipo-A e razão FeO/(FeO+MgO) em rocha total variáveis desde ferrosas até magnesianas. Estudos químico-mineralógicos realizados nos granitos neoarqueanos, envolvendo microscopia ótica, microscopia eletrônica de varredura, microssonda eletrônica e petrologia experimental, revelaram notáveis variações entre as principais fases minerais. Epidoto é uma fase comum nas variedades ferrosas reduzida, oxidada e magnesiana da Suíte Vila Jussara, exibindo conteúdo de pistacita entre 25 e 30 mol.%. Na Suíte Planalto e demais granitoides neoarqueanos da PC, epidoto é uma fase ausente. O estudo da cinética de dissolução dos epidotos da PC mostra que sua formação e estabilidade está diretamente relacionada às condições de pressão, temperatura e fugacidade de oxigênio, porém, sua estabilidade também é condicionada pelos mecanismos de ascensão, colocação e cristalização, que influenciam a intensidade de dissolução dos cristais. Estudos químicomineralógicos realizados em titanita das suítes Vila Jussara e Planalto e paleoproterozoicas da Suíte Jamon, revelaram notáveis variações texturais e composicionais neste mineral. As razões Fe/Al em titanita são bastante variáveis nos granitos estudados, tendo sido distinguidos com base nelas três grandes grupos de titanitas: 1) razão Fe/Al alta (Fe/Al >0.5); 2) moderada (0.5≤Fe/Al≥0.25); e 3) baixa (Fe/Al <0.25). Além disso, de forma geral, os dados obtidos corroboram a tendência de maior estabilidade da titanita em condições oxidantes, próximas do tampão Níquel-Níquel-Oxigênio (NNO), porém, a ocorrência de titanita magmática em variedades reduzidas das suítes Vila Jussara e Planalto mostra que é possível ocorrer sua cristalização em condições próximas ao tampão Faialita-Magnetita-Quartzo (FMQ). Ademais estudos de petrologia experimental realizados nas mesmas suítes neoarquenas, mostram que a amostra MDP-02E, com composição tonalítica, representando o magma magnesiano oxidado da Suíte Vila Jussara, exibe conteúdo de SiO2 em torno de 60% em rocha total e 61,05% no vidro experimental, enquanto a amostra de composição sienogranítica (AMR-116), pertencente a variedade fortemente reduzida da Suíte Planalto, apresenta teor de SiO2 em rocha total em 74,13% versus 73,17% no vidro, indicando que as condições experimentais inicialmente calibradas, se aproximaram das condições magmáticas naturais. As condições de cristalização do magma tonalítico e sienogranítico foram efetuados a partir de nove experimentos nas duas amostras, com calibrações preferenciais em pressão de ~4 kbar, ƒO2 em ~NNO-1.3 (1.3 unidade log abaixo do tampão NNO) e temperatura variando de 850°C a 668°C e conteúdo de H2O entre 9% e 6% em peso. Além disso, dois experimentos em ƒO2 ~NNO+2.4, com temperaturas variando de 800°C a 700°C, com mesma pressão e variação de H2O dos experimentos reduzidos. Subordinadamente, foram realizados experimentos em 8 kbar e 2 kbar, com condição redox variável. Tais experimentos mostram que o tonalito da Suíte Vila Jussara cristalizou em ~4 kbar, a partir de um magma com alta concentração de H2O (>5% em peso) e em ƒO2 oxidante, provavelmente entre NNO e NNO+1. Por outro lado, os experimentos realizados na composição sienogranítica da Suíte Planalto (AMR-116), mostram uma paragênese principal definida por Cpx+Fa, diferindo fortemente dos minerais naturais, sugerindo que os experimentos não atingiram condições próximas as naturais.
