Teses em Geofísica (Doutorado) - CPGF/IG
URI Permanente para esta coleçãohttps://repositorio.ufpa.br/handle/2011/2357
O Doutorado Acadêmico pertente a o Programa de Pós-Graduação em Geofísica (CPGF) do Instituto de Geociências (IG) da Universidade Federal do Pará (UFPA).
Navegar
Navegando Teses em Geofísica (Doutorado) - CPGF/IG por Agência de fomento "CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior"
Agora exibindo 1 - 18 de 18
- Resultados por página
- Opções de Ordenação
Tese Acesso aberto (Open Access) Análise de processos oceanográficos no estuário do rio Pará(Universidade Federal do Pará, 2016-11-04) ROSÁRIO, Renan Peixoto; ROLLNIC, Marcelo; http://lattes.cnpq.br/6585442266149471This thesis investigated physical oceanographic processes in the Pará River estuary, focusing on saline intrusion and hydrodynamic process. The choice of this topic arose from the motivation to consolidate the understanding of hydrodynamic and hydrographic issues in the Pará River estuary since this region of the Amazon Coastal Zone still a challenge to researchers. The first step was to define the methods and parameter to get better data in time and space difference. In this context, direct observations were conducted in the estuary in two moments, the low and high river discharge, using velocity, salinity profile (longitudinal and vertical), and temperature profile. Furthermore, in an unprecedented way, it was conducted over a year and ten months salinity and water level (tide) monitoring at strategic points of the estuary. The main conclusions of this research obtained from this data set was the identification of salt water intrusion in the estuary of the Pará River, entering about 100 km from the mouth. The sensitivity of salinity intrusion is affected by river discharge (seasonal variability), and tide energy (daily variability). The Stokes drift generated by tidal propagation in the estuary was the responsible for the net salt flux landward. The innermost portion of the estuary (more than 60 km from the mouth) does not show gravitational circulation and the estuary salt transport above is performed entirely by turbulent diffusion; and the outer portion of the resulting stream reverts to the depth and advective and diffusive processes are important to contribute to the salt transport in the estuary.Tese Acesso aberto (Open Access) Determinação das velocidades intervalares usando a teoria paraxial do raio: aproximação de segunda ordem dos tempos de trânsito(Universidade Federal do Pará, 1998) MONTES VIDES, Luis Alfredo; SÖLLNER, Walter FranzIn this work a method was developed to solve the inverse seismic problem in models consisting of isotropic and homogeneous layers separated by smooth interfaces, which determines the interval velocities in depth and calculates the geometry of the interfaces. The traveltime is expressed by a function with parameters referred to a coordinated system fixed at the central ray, and numerically estimated at the superior surface of the model in the vicinity of the normal ray. The function is later recalculated at the anterior interface limiting the unknown layer, through a process which determines the characteristic function in depth. The characteristic function of the traveltimes evaluated at the anterior interface allows to know the interval velocity of the layer and the geometry of the posterior interface where the normal reflection takes place. The procedure is repeated recursively at deeper layers getting the complete solution without a priori knowledge but the upper determined layers. Computer’s programs expressing the algorithm of the method were developed and tested with synthetic seismic data, generated through models with structural factions very common in geological sections, obtaining the interval velocities in depth with considered acceptable errors and reconstructing the interfaces. A sensibility analysis was done in order to verify the stability of the two methods. The empirical range of applicability of hyperbolic dynamic corrections was taken for the range of applicability of the developed method.Tese Acesso aberto (Open Access) Espalhamento elástico em meios anisotrópicos estratificados(Universidade Federal do Pará, 1994-06-09) PROTÁZIO, João dos Santos; SCHOENBERG, MichaelAVO analysis is an importante tool for extracting lithological information from seismic data using the contrast in acoustic impedance at the lithological boundaries. The isotropic assumption behind this analysis does not hold in many cases. The advent of large offset surveys and multi-component data has revealed the presence of subsurface anisotropy. To interpret such data, the AVO analysis must include anisotropy. This work presents an AVO theory and numerical results for an anisotropic layered medium. This thesis contains three contributions. First, a new approach to the study of reflection-transmission at a plane interface between anisotropic media with a horizontal mirror plane is presented. The Zoeppritz equations are generalized to include anisotropy by the introduction of impedance matrices which greatly simplifies the previous formalisms. Second, the study of the P-wave reflection at an interface between an isotropic and a transversally isotropic medium is described and it is show that the reflected P-wave does not have information about the underlying anisotropic subspace for pre-critical incidence. Finally, the behavior of post-critical reflected and transmitted pulses through a stack of anisotropic layers is discussed. The post-critical pulses are show to carry valuable information on the anisotropy of the structure through which the waves propagate.Tese Acesso aberto (Open Access) Imageamento homeomórfico de refletores sísmicos(Universidade Federal do Pará, 1994-10-06) CRUZ, João Carlos Ribeiro; HUBRAL, Peter; http://lattes.cnpq.br/7703430139551941This thesis presents a new technique for seismic stacking called homeomorphic imaging, which is applicable to the imaging of seismic reflectors in a bidimensional, inhomogeneous and isotropic medium. This new technique is based on ray geometrical approximation and topological properties of reflection surfaces. For this purpose the concepts of wavefront, incidence angle, radius and caustic of wavefront and ray trajetory are used. Considering a circle as the geometrical approximation of the wavefront in propagation, it is possible to define diferent homeomorphic imaging methods, depending on processing configuration. In this way, the following methods are possible: 1) Common Source (Receiver) Element (CS(R)E), which relate to a set of seismograms with a single source (receiver) and a real reflected wavefront is considered; 2) Common-Reflecting-Element (CRE), which relate to a set of seismograms with a single reflection point and a wavefront hipotetically generated in the same reflection point is considered; 3) Common Evolute Element (CEE), which relate to a set of seismograms with each pair of source and geophone located in the same point on the seismic line and a wavefront hipothetically generated in the curvature center of the reflector is considered. In the first method is obtained a stacked seismic section using arbitrary central rays. In the last two methods the result is a zero-offset seismic section. These methods give also other two sections called radiusgram and anglegram, the latter being emergence angles and the former radii of wavefront in the moment that it reaches the observational surface. The seismic stacking is made using a local correction-time applied to the travel time of a ray that leaves the source, and after reflection, is registered as a primary reflection at a geophone, in relation to the reference time which is the travel time of the central ray. The formula used for the temporal correction depends on the radius, the emergence angle of the wavefront and the velocity which is considered constant near the seismic line. It is possible to show that in this new technique the registered signal is not submitted to stretch effects as a consequence of the temporal correction, furthermore there is no problem with reflector point dispersal as a consequence of dip reflectors, in contrast with the techniques that are based on NMO/DMO. In addition, considering that no a prori knowledge of a macromodel is necessary but the velocity near the seismic line, the homeomorphic imaging can be applied to inhomogeneous models without losing the strictness of the formulation.Tese Acesso aberto (Open Access) Influência de estruturas geológicas bidimensionais no campo geoeletromagnético na presença do eletrojato equatorial(Universidade Federal do Pará, 2005) SILVA, Marcos Welby Correa; RIJO, Luiz; http://lattes.cnpq.br/3148365912720676The Earth acts as a large magnet, whose field resembles one that is generated by a magnetic dipole. This field presents intensity changes that vary with observation location and the local time. The main part of the geomagnetic field is created within the Earth by electromagnetic processes. Extensive studies showed that there are also contributions from outside the Earth, mainly from solar origin. Among these outside sources there are anomalies of the magnetic field that arise from an diurnal increase of the electric current in a narrow strip located in the ionosphere, with east-west direction, centered above the magnetic equator and denominated Equatorial Electrojet (EEJ). Occasionally these currents present flow reversions, therefore denominated Counter-Electrojet (CEJ). Several authors have been studying the effects of the EEJ on the geomagnetic observations. They are interested in the combined effect of the equatorial electrojet and the 1-D e 2-D conductive geological structure underneath. In these works the 2-D structure is always considered parallel to the electrojet, which is a quite restrictive hypotheses in view to realistic geological situation, in that two-dimensional structures can have any direction in relation to the electrojet. We present in this work the solution of this problem without this restriction. Thus, here we present the geomagnetic fields due to a two-dimensional structure that possess oblique strike in relation to Equatorial Electrojet, through profiles of the electric and magnetic fields, calculated on the surface and forming arbitrary direction to the 2-D conductive heterogeneity. Further, we also evaluate the influence of an arbitrarily oriented two-dimensional structure would cause on the Magnetotelluric data, under the quatorial Electrojet. In the development of this work, we applied the method of finite elements with the EEJ and CEJ as electromagnetic source, that was represented by a sum of gaussians distributions of current density. This source was decomposed in the parallel and the perpendicular directions to the 2-D structure, resulting in the mode TE1 and the coupled mode TE2 and TM, respectively. We solved the coupled mode applying a Fourier Transform in the Maxwell equations and one Inverse Fourier Transform in the transformed-domain solution. According to the numerical experiments on a interpretative model of Parnaíba Basin Conductivity Anomaly, formed by a large 3000 ohm-m body inside a very conductive (1ohm-m) external structure, we conclude that the presence of the CEJ causes an inversion in the anomaly. We also conclude that at high frequencies the components of the electric field present smaller influence of the internal part of the 2-D body than the external part. Otherwise, we observed this behavior in the magnetic field at low frequencies. Varying the frequencies, we saw the effects of the “skin-depth” mainly in the magnetic field. Besides, there are situations where electric field is insensitive to the internal structure of the model for all values of the frequency used. With regard to the angle θh between the strike of the conductive heterogeneity and the EEJ direction, we observe the TM mode naturally when θh is different from 0°. In this case, the TE mode is composed of two components, one decomposition of the EEJ parallel to the heterogeneity and the other perpendicular to it. As consequence, the E and B fields have all their three components. When we analyzed the influence of the angle between the direction of the profile of fields and the strike of the 2-D heterogeneity, we conclude that its variation causes an asymmetry on the anomalies, which give an idea about the profile’s direction. Finally, we conclude that one of the influences that the distance between the center of the electrojet and center of the 2-D structure causes on the fields is related to the reverse currents, because at 500 km from the EEJ’s center, these currents have their maximum intensity. In the MT soundings, we also used the EEJ and CEJ as primary source and we compared our results with the plane wave response. We noted that the components of the geomagnetic field, used to evaluate the impedance, have an influence from the coupling factor between the TE2 and TM modes. Moreover, this influence become greater with decreasing of the frequency and for resistive host. However, the coupling factor do not affects the MT response at frequencies higher than 10-2 Hz. For lower frequencies, about 10-4 Hz, we detect two kinds of pertubations on the MT data with respect to the plane-wave one: the first is due the presence of the 2-D electromagnetic source (EEJ and CEJ) as primary field, which violates the plane wave hypothesis; and the second is caused by the coupled TE and TM modes because additional electric currents arise in the heterogeneity’s direction when it is oblique to EEJ. These efects increase with the resistivity of the environment. In conclusion, the strike of a large conductive 2-D structure relative to the direction of the EEJ or CEJ do have influence on the geomagnetic field. On the other hand, for shallow magnetotelluric studies (frequencies higher than 10-3 Hz) the effect of angle between the strike of the 2-D geological structure and the direction of the EEJ is not so important. However, for litospheric studies (frequencies lower than 10-3 Hz) the coupling between the two modes can not be ignored.Tese Acesso aberto (Open Access) Inversão da forma de onda orientada ao alvo(Universidade Federal do Pará, 2016-09-16) COSTA, Carlos Alexandre Nascimento da; COSTA, Jessé Carvalho; http://lattes.cnpq.br/7294174204296739We propose a new target-oriented waveform inversion to estimate the physical parameters from a specific target in the subsurface from observed data from deviated-VSP acquisition or surface seismic data. Furthermore, we investigate a strategy to estimate the impulse responses from a local target in the subsurface from deviated-VSP acquisition or surface seismic data as an iterative sparse inversion approach, where the main feature of this strategy is that all multiple scattering in the data is used to enhance the illumination at target level. In these approaches we fit the upgoing wavefields observed at a specific level near the local target with the upgoing wavefields estimated at same depth level through convolution-type representation for the Green’s function. The main feature of the target-oriented waveform inversion is that we just need to know the up- and downgoing wavefields at the depth level above the target area to estimate the physical parameters for the area of interest. We show through numerical tests that the iterative sparse inversion approach does not require dense sources sampling to estimate the impulse responses from a target below a complex overburden, because of all the extra illumination via multiples. The physical parameters above the target area is not necessary to know if we use the data from deviated-VSP geometry of acquisition, but for surface seismic data we need to know a smooth physical parameter above the target area to estimate the up- and downgoing wavefields at depth level nearby the local target. For surface seismic data we used Joint Migration Inversion to estimate the up- and downgoing wavefields at depth level near the target area.Tese Acesso aberto (Open Access) Inversão de dados eletromagnéticos com o regularizador Variação Total e o uso da matriz de sensibilidade aproximada(Universidade Federal do Pará, 2012-12-20) LUZ, Edelson da Cruz; RÉGIS, Cícero Roberto Teixeira; http://lattes.cnpq.br/7340569532034401Tese Acesso aberto (Open Access) Inversão de velocidades por otimização global usando a aproximação superfície de reflexão comum com afastamento finito(Universidade Federal do Pará, 2016-08-25) MESQUITA, Marcelo Jorge Luz; CRUZ, João Carlos Ribeiro; http://lattes.cnpq.br/8498743497664023The recent geophysical literature has shown the building of an accurate initial model is the more appropriate way to reduce the ill-posedness of the Full Waveform Inversion, providing the necessary convergence of the misfit function toward the global minimum. Optimized models are useful as initial guess for more sophisticated velocity inversion and migration methods. I developed an automatic P-wave velocity inversion methodology using pre-stack two-dimensional seismic data. The proposed inversion strategy is fully automatic, based on the semblance measurements and guided by the paraxial traveltime approximation, so-called Finite-Offset Common-Reflection-Surface. It is performed in two steps, at first using image rays and an a priori known initial velocity model we determine the reflector interfaces in depth from time migrated section. The generated depth macro-model is used as input at the second step, where the parametrization of the velocity model is made layer by layer. Each layer is separated from each other by smoothed interfaces. The inversion strategy is based on the scan of semblance measurements in each common-midpoint gather guided by the Finite-Offset Common-Reflection-Surface traveltime paraxial approximations. For beginning the inversion in the second step, the finite-offset common-midpoint central rays is built by ray tracing from the velocity macro-model obtained in the first step. By using the arithmetic mean of total semblance calculated from the whole common-midpoint gathers as objective function, layer after layer, a global optimization method called Very Fast Simulated Annealing algorithm is applied in order to obtain the convergence of the objective function toward the global maximum. By applying to synthetic and real data, I showed the robustness of the inversion algorithm for yielding an optimized P-wave velocity macro-model from pre-stack seismic data.Tese Acesso aberto (Open Access) Modelagem e imageamento 2.5D no domínio do tempo através de diferenças finitas(Universidade Federal do Pará, 2010) SILVA NETO, Francisco de Assis; SCHLEICHER, Maria Amélia Novais; http://lattes.cnpq.br/4767998352165705; COSTA, Jessé Carvalho; http://lattes.cnpq.br/7294174204296739This thesis discuss modeling and imaging of seismic wavefields in 2.5D using finite-differences to solve numerically the wave equation. Modeling in 2.5D is extended to anisotropic elastic media with an arbitrary class of symmetry. The sources of the wavefield are generalized to simulate of explosive, dipole and double-couple distributions. The acquisition geometry is not required to coincide with a symmetry plane. Reverse time migration in 2.5D is implemented in conjunction with a new imaging condition based on the asymptotic analysis of the classical correlation imaging condition. The new imaging condition is designed to improve the amplitudes in reverse time migration (RTM) images, and to reduce back-scattering artifacts. Numerical experiments indicate that 2.5D RTM improves the resolution of the migrated images when compared to its 2D counterpart, and that the proposed imaging condition was effective improving the amplitudes and reducing back-scattering artifacts.Tese Acesso aberto (Open Access) Modelagem eletromagnética 2.5-D de dados geofísicos através do método de diferenças finitas com malhas não-estruturadas(Universidade Federal do Pará, 2014-10-23) MIRANDA, Diego da Costa; RÉGIS, Cícero Roberto Teixeira; http://lattes.cnpq.br/7340569532034401; HOWARD JUNIOR, Allen Quentin; http://lattes.cnpq.br/6447166738854045We present a 2.5D electromagnetic formulation for modelling of the marine controlledsource electromagnetic (mCSEM) using a Finite Diference frequency domain (FDFD) method. The formulation is in terms of secondary fields thus removing the source point singularities. The components of the electromagnetic field are derived from the solution of the magnetic vector potential and electric scalar potential, evaluated in the entire problem domain that must be completely discretized for the use of the FDFD. Finite difference methods result in large sparse matrix equations that are efficiently solved by sparse matrix algebra preconditioned iterative methods. To overcome limitations imposed by structured grids in the traditional FDFD method, the new method is based upon unstructured grids allowing a better delineation of the geometries. These meshes are completely adaptable to the models we work with, promoting a smooth design of their structures, and may only be refined locally in regions of interest. We also present the development of RBF-DQ method, (radial basis function differential quadrature) which makes use of the technique of functions approximation by linear combinations of radial basis functions (RBF) and the technique of differential quadrature (DQ) for approximation of the derivatives. Our results show that the FDFD method with unstructured grids when applied to geophysical modeling problems, yield improved quality of modeled data in comparison with the results obtained by traditional techniques of FDFD method.Tese Acesso aberto (Open Access) Modelagem numérica da influência do eletrojato equatorial em dados magnetotelúricos produzidos por estruturas tridimensionais(Universidade Federal do Pará, 1993-02-05) GONZÁLEZ CARRASQUILLA, Antonio Abel; RIJO, Luiz; http://lattes.cnpq.br/3148365912720676South America presents several unique geomagnetic features, one of which is the Equatorial Electrojet, a current system which extends east - west in Northern Brazil, for almost 3500 km. Considering the fact that the influence of the Equatorial Electrojet can be detected at great distances from its central axis, it is important to understand its effects on magnetotelluric exploration in Brazil. In magnetotelluric prospecting, the influence of the equatorial electrojet has been modelled for both one and two - dimensional geological media, employing both analytical and numerical techniques solutions such as finite element and finite difference. Three-dimensional geological media have been modeled by "thin – layers "using a "thin sheet" algorithm. Lines of current, gaussian electrojets and undulatory electrojets have been used as induction sources to simulate the equatorial electrojet in these algorithms. In this thesis the principal objective is to model the effects of the equatorial electrojet on three - dimensional structures commonly found in geophysical prospecting. To accomplish this, we have computed numerical solutions of the integral equation for three - dimensional media using the inductive sources mentioned before. As previous works have indicated, our results also show that the influence of the equatorial electrojet is prominant only for frequencies lower than 10-1 Hz. This influence decreases with distance but is detectable up to as far as 3000 km from the center of the electrojet. Thus, the presence of peaks in the apparent resistivity profiles over a homogeneous half - space indicates that the influence of the electrojet is more noticeable for this kind of medium. These peaks display different amplitudes for each type of simulated electrojet, and the peak locations also change from one electrojet to the other. However, when we use more geologically realistic one - dimensional models such as a stratified media, the effect of the electrojet source diminishes considerably and the results do not vary greatly for the different kinds of electrojet employed in the model. This effect is caused by the electromagnetic energy dissipation due to the presence of stratified conductive layers within the media. Within the 3000 km region, the three - dimensional electromagnetic response can be larger or smaller than the plane wave response, depending on location body, frequency, kind of the electrojet and geology. When the apparent resistivity is larger than the plane wave response, there is a spread between the one and the three-dimensional sounding curves caused by the electrojet, as well as a widening of the profile anomaly caused by the three - dimensional inhomogeneities relative to the one due to a plane wave. When the apparent resistivity is less the two kinds of sources yield anomalies approximately equal as well as a shortening of the profile anomaly. On the other hand, the phase usually shows an inverted way related to the apparent resistivity. This means that when one phase goes up the apparent resistivity goes down, and vice - versa. Similarily at high frequencies, the one and three - dimensional phases are offset, while at low frequencies they are the same, except for the undulating electrojet with undulation factor α = -2 and -3. Our results also show that the geometric characteristics of three-dimensional structures, such as their orientation relative to the direction of the electrojet and the dimensions of their principal direction, change the response due to the electrojet source as compared to a plane wave source. For example, when the three - dimensional structure is rotated 90 degrees, relative to the direction of the electrojet, there is a change in polarization (of the electric and magnetic fields) but there are no changes in the values of apparent resistivity at the center of symmetry of the structure. When the measurements are taken away from the center of symmetry changes in the apparent resistivity are shown when compared with the unrotated structure. This is due to the persistente of the galvanic effects at the center of the structure and the presence of inductive effects at the periphery of the three - dimensional body. When we elongate the principal direction of the three - dimensional structure, the magnetotelluric soundings start to approach those of two-dimensional structures. This is more noticiable in the XY polarization. Even so, the responses of the models tested are still quite different from the responses of the quasi two - dimensional structures. Nevertheless, the effects of the electrojet in structures with elongated principal direction are very similar to those present in smaller structures, considering the differences between the soundings of both kinds of structures. On the other hand, the apparent resistivities of this kind of elongated structures show a great increase at the edges of these structures, both for the plane wave or electrojet sources. This effect is caused by the chanelling of the current along the main direction of the structure. The modelling of gelogical structures in the Marajó Basin, confirms that the effects of the electrojet can be detected even in small horst and graben structures located at great distances from electrojet center. Electrojet effects are noticeable in both one and three - dimensional media for two frequency bands, one near 10-1 Hz and another band, between 10-3 Hz to DC. This possibly reflects the influence of a resistive geological basement and a resistive lower crust, respectively. The results of the analysis, using the electrojet as an inductive source show that at low frequencies the computed responses from the magnetotelluric soundings can be strongly distorted, both by galvanic effects in the three - dimensional structure as well as the presence of the electrojet. Therefore, if the equatorial electrojet effects are not accounted for, a misleading interpretation magnetotelluric data will result. Similarily, a three - dimensional model should be used to interpret the data, instead of one-dimensional Tikhonov-Cagniard model.Tese Acesso aberto (Open Access) Modelagem sísmica e inversão na presença de anisotropia(Universidade Federal do Pará, 1993-11-04) COSTA, Jessé Carvalho; SCHOENBERG, MichaelThe assumption of anisotropic elastic models, in the context of exploration seismology, has been increasing since the advent of new aquisition tecniques: VSP, walkway VSP, crosshole tomography and large offset seismic surveys. Effective anisotropic elastic models can account for patterns of inhomogeneities at a scale much lower than the wavelength of the propagating seismic energy. Particularly, effective media can account for the most robust seismic data, i.e., traveltime measurements. This work investigates some aspects of wave propagation, raytracing and traveltime inversion in anisotropic media. The propagation of SH waves in a layered anisotropic medium in the most general case where these waves can occur, i.e., propagation in the mirror symmetry plane of a monoclinic medium, is studied. It is shown that SH reflected field from a stratified half-space is 'blind' to the possible anisotropy below. Fast ray tracing procedures for stratified anisotropic media in 3D are presented. Such ray tracing codes are a first step towards the development of traveltime inversion algorithms for non-flat anisotropic layers in 3D. Traveltime inversion of VSP and walkway VSP is a promissing approach to 3D velocity model building, starting from a well location. These velocity models are necessary for the migration of seismic data in the presence of anisotropy. The analysis of the nonlinear tomographic inversion, for a vertically inhomogeneous transversally isotropic medium with vertical axis of symmetry (TIV), is presented. The limitations of qP traveltime data are pointed as well as the consequences of the lack of full angular ray coverage for tomographic inversion. An algorithm for tomographic inversion is presented and evaluated in synthetic data seis. Application to real data is presented. This approach is attractive for cases where the formations are known a priori to be relatively flat, and where crosswell data itself shows a high degree of left-right symmetry. It also may be of use for preliminary surveys, where the layered estimate can be used as a background model to carry out more detailed analysis, e.g., as an anisotropic velocity model for migration, or as a calibration model for AVO analysis.Tese Acesso aberto (Open Access) Post-imaging analysis of pressure prediction in productive sedimentary basins for oil and gas exploration(Universidade Federal do Pará, 2015-05-26) VIEIRA, Wildney Wallacy da Silva; LEITE, Lourenildo Williame Barbosa; http://lattes.cnpq.br/8588738536047617This thesis has several aspects related to the problem of basin modeling towards oil and gas exploration, and with two general divisions: parameter estimation, and pressure prediction. For the structure of this work, the first topic is related to velocity analysis and effective media, where estimated a distribution for the P wave velocity in time, the transformation to depth, and the use an effective model for the density and for the S wave velocity distributions. The reason for initially focusing on these estimations is because they represent one of the most basic information that one can have from the seismic domain, from where the other seismic parameters can be calculated, and from where the second part of this is totally based. The second topic is related to computing stress, strain and pressure distribution in the subsurface using the information from the P and S wave velocities and the density models, in order to localize areas of high and low pressures that act as natural suction pumps for the mechanics of oil and gas accumulation into productive zones and layers. We have highlighted this second part for the final work presentation, and call attention to the sensitivity of pressure mapping to the velocity and density variations. We also classify the first division as dedicated to the conventional seismic processing and imaging, and have clled the second division as post-imaging stressstrain-pressure prediction. As for the final aim of geophysics is to create images of the subsurface under different properties, the stress calculation only makes total sense for real data, and this makes mandatory the acquired seismic data be three component. As an important conclusion from the numerical experiments, we show that pressure does not have a trivial behavior, since it can decrease with depth and create natural pumps that are responsible for accumulating fluids. The theory of porous media is based on integral geometry, because this mathematical discipline deals with collective geometrical properties for real reservoirs. It was shown that such collective properties are namely for porosity, specific surface, average curvature and Gaussian curvature. For example, cracked media has, as a rule, small porosity, but very large specific surface area that creates anomalous high 𝛾 = 𝑣𝑆/𝑣𝑃 ratio, what means a negative 𝜎 Poisson coefficient. Another conclusion is related to calculating discontinuity in pressure between solid and fluid, what depends on the structure of pore space.Tese Acesso aberto (Open Access) Região do espaço que mais influencia em medidas eletromagnéticas no domínio da frequência: caso de uma linha de corrente sobre um semi-espaço condutor(Universidade Federal do Pará, 1994-07-28) BRITO, Licurgo Peixoto de; DIAS, Carlos Alberto; http://lattes.cnpq.br/9204009150155131One of the major interpretation problems in geophysics is to determine the region in the subsurface which generates the main part of the signal. In this thesis, the position and size of this region, hereinafter called the main zone, have been found by modelling an electromagnetic system in which the source is an infinite line of electric current, extended over a conductive half-space. The earth has been modelled as a conductive half-space with an inhomogeneity in it as being an infinite layer or a prism of infinite length in the direction of the source line. The signal in the receiver of an electromagnetic system over a conductive homogeneous half-space is different from the one taken over the half space including an inhomogeneity. This difference is a function of the position of the inhomogeneity in relation to the transmiter-receiver system, besides other parameters. Therefore, with the other parameters fixed, there will be a specific position where this difference will maximize. Since this position depends on conductivity contrast, inhomogeneity dimensions and on source frequency, instead of a single position one will have a region where the inhomogeneity will give the maximum contribution to the measured signal. This region is called the main zone. Once the main zone is identified, the targets in the subsurface can be more precisely located. Usually they are conductive parts of the earth with some specific interest. One can facilitate the exploration and reduce production costs if these conductors are well identified during prospecting. A detectability function (∆) has been defined to measure the contribution to the signal due to the inhomogeneity. The ∆ function has been computed using amplitude and phase of the magnetic field components: Hx and Hz which are, respectively, the tangential and the normal to the earth's surface. The size and position of the main zone has been identified using the extremais of the ∆ function, which change with conductivity contrast, and the inhomogeneities' size and depth. Electromagnetic fields for one-dimensional models were calculated using a hybrid form, numerically solving the integrals that were obtained analytically. Two-dimensional models were computed numerically, by the finite elements technique. The maximum values of ∆ function, computed with amplitude of Hx, have been chosen to locate the main zone. This shows more stable results than other amplitude and phase components, both for one and two-dimensional models, when physical properties and geometric dimensions are changed. For the one-dimensional model, where the inhomogeneity is an infinitely extended horizontal layer, the depth of its central plane was found to be po = 0.17 δo, where po is the depth of this central plane and δo is the skin depth for the plane wave (in an homogeneous half-space having a conductivity σ1 equal to that of the backgound, and the frequency w corresponding to the maximum value of ∆ calculatede for the amplitude of Hx). For two-dimensional inhomogeneities, the co-ordinates of the main zone central axis was found to be do = 0,77 r0 (where do is the horizontal distance from this axis to the source) and po = 0,36 δo (where po is the depth of this central axis), with r0 being the source-receiver separation and δo the skin depth in the same conditions as in the one-dimensional case. If the values of r0 and δo are known, it is possible to determine (do, po). Associating each value of ∆ function (calculated using the amplitude of Hx) with the values of d = 0,77 r and p = 0,36 δ for each r and w used to generate ∆, a method to locate the main zone is sugested. The isovalue curves of ∆ are plotted to construct sections of ∆. These sections indicate the conductors position and provide some helpful insight into their geometric forms when the values of ∆ get dose to the maximum.Tese Acesso aberto (Open Access) Respostas eletromagnéticas dos arranjos coplanar e coaxial em poço(Universidade Federal do Pará, 2000-09-29) CARVALHO, Paulo Roberto de; VERMA, Om Prakash; http://lattes.cnpq.br/2723609019309173None of the known resistivity borehole devices possesses azimuthal focusing properties whereas the unconventional coplanar coil array has, by design, a strong azimuthal focus. In order to understand in detail the influence of this property of the coplanar system, its electromagnetic responses in the varying boreholes conditons are obtained for a two coil array. Although simple, the solutions of a homogeneous conducting medium are exploited to understand the skin effects phenomena. The coplanar response of a nonhomogeneous medium, obtained through Sommerfeld boundary value problem, is then extended to the various borehole models, particularly (1) the invaded mud filtrate with gradational transition zones; (2) dipping multilayer sequences; (3) thinly laminated zones, and (4) gradational transition zone between two thick beds. Based on the comparative study between, the traditional coaxial and the unconventional coplanar coil responses we conclude that: 1. the skin effects are stronger in the coplanar responses than the coaxial but this disadvantage is partially compensated by applying the corrections for these effects; 2. the polarization "horns" are obtained in the coplanar profiles in front of bed boundaries, consequently, they are their high quality indicators; 3. the coplanar system is an important auxiliar tool to investigate the mud filtrate invasion and the presence of annulus zones which are direct indicators of movable hydrocarbons, and; 4. its azimuthal focussing properties can be explored in the borehole investigations of the axially assymetrical geological situations such as vugular or fracture zones and invasion zones in horizontal wells.Tese Acesso aberto (Open Access) Seismic amplitude analysis and quality factor estimation based on redatuming(Universidade Federal do Pará, 2015-04-25) OLIVEIRA, Francisco de Souza; FIGUEIREDO, José Jadsom Sampaio de; http://lattes.cnpq.br/1610827269025210Amplitude correction is an important task to correct the seismic energy dissipated due the ineslasticity absortion and the geometrical spreading during the acoustic/elastic wave propagation in solids. In this work, we propose a way to improve the estimation of quality factor from seismic reflection data, with a methodology to estimate de quality factor based on the combination of the peak frequency-shift (PFS) method and the redatuming operator. The innovation in this work is in the way we correct travel times when the medium is consisted by many layers. In other words, the correction of traveltime table used in the PFS method is performed using the redatuming operator. This operation, which is performed iteratively, allows to estimate the Q-factor layer by layer in a more accurate way. A redatuming operation is used to simulate the acquisition of data in new levels, avoiding distortions produced by near-surface irregularities related to either geometric or material property heterogeneities. In this work, the application of the true-amplitude Kirchhoff redatuming (TAKR) operator on homogeneous media is compared with conventional Kirchhoff redatuming (KR) operator restricted to the zero-offset case. Our methodology is based on the combination of the peak frequency-shift (PFS) method and the redatuming operator (TAKR with weight equal 1). Application in synthetic and in seismic (Viking Graben) and GPR (Siple Dome) real data demonstrates the feasibility of our analysis.Tese Acesso aberto (Open Access) Solução da equação de Archie com algoritmos inteligentes(Universidade Federal do Pará, 2011) SILVA, Carolina Barros da; ANDRADE, André José Neves; http://lattes.cnpq.br/8388930487104926Archie equation is a historical mark of Formation Evaluation establishing a relationship among the physical properties and the petrophysical properties of reservoir rocks, which makes possible the identification and quantification of hydrocarbon in subsurface. Water saturation is the solution of Archie equation obtained from the measure of formation deep resistivity and porosity estimated. However, the solution of Archie equation is no trivial, in the dependence of previous knowledge of formation water resistivity and Archie exponents (cementation and saturation). This thesis introduces a set new intelligent algorithm to solve Archie equation. A modification of competitive neural network, nominated as bicompetitive neural network produces the log zonation. A new genetic algorithm with evolutionary strategy based in the mushrooms reproduction produces estimates for the matrix density, the matrix transit time and the matrix neutron porosity, which associated to a new rock model, produces realistic porosity estimates considering shale effects. A new model of competitive neural network, nominated as angular competitive neural network is able to accomplish the interpretation of Pickett plot, supplying the information about formation water resistivity and cementation exponent. All results of the methodology hereintroduced are presented using synthetic data and actual wireline logs and core analysis results.Tese Acesso aberto (Open Access) Structural constraints for image-based inversion methods(Universidade Federal do Pará, 2016-04-22) MACIEL, Jonathas da Silva; COSTA, Jessé Carvalho; http://lattes.cnpq.br/7294174204296739This thesis presents two methodologies of structural regularization for Wave-Equation Migration Velocity Analysis and Joint Migration Inversion: cross-gradient regularization and filtering with morphological operators. In Wave-Equation Migration Velocity Analysis, the cross-gradient regularization aims to constrain the velocity contrasts with the reflectivity map by parallelization of the velocity gradient vector and the image gradient vector. We propose a version with cross-gradient of the objective functions: Differential Semblance, Stack Power and Partial Stack Power. We combine the Partial Stack Power with its version of cross-gradient, in order to gradually increase the resolution of the velocity model without compromising the adjustment of the long wavelengths of the velocity model. In Joint Migration Inversion, we propose to apply morphological operators of erosion and dilation in the preconditioning of the velocity model in each iteration. Operators use the reflectivity map to mark the regions with the same value of physical property. They homogenize the geological layer and accentuate the velocity contrast at the edges. Structural constraints do not only reduce the ambiguity in estimating a velocity model, but also make the migration/inversion methods more stable, reducing artifacts, delineating geologically plausible solutions, and accelerating the convergence of the objective function.
