Dissertações em Geologia e Geoquímica (Mestrado) - PPGG/IG
URI Permanente para esta coleçãohttps://repositorio.ufpa.br/handle/2011/2604
O Mestrado Acadêmico pertence ao Programa de Pós-Graduação em Geologia e Geoquímica (PPGG) do Instituto de Geociências (IG) da Universidade Federal do Pará (UFPA).
Navegar
Navegando Dissertações em Geologia e Geoquímica (Mestrado) - PPGG/IG por Agência de fomento "INCT/GEOCIAM - Instituto Nacional de Ciência e Tecnologia de Geociências da Amazônia"
Agora exibindo 1 - 7 de 7
- Resultados por página
- Opções de Ordenação
Item Acesso aberto (Open Access) A capa carbonática do sudoeste do cráton amazônico, estado de Rondônia: nova ocorrência e extensão dos eventos pós-glaciação marinoana (635 Ma)(Universidade Federal do Pará, 2014-11-27) GAIA, Valber do Carmo de Souza; NOGUEIRA, Afonso César Rodrigues; http://lattes.cnpq.br/8867836268820998In the Western Amazon Craton, specifically in Western Parecis Basin, Rondônia State, carbonate rocks exposed on border of Pimenta Bueno and Colorado Grábens are considered to be part of the eopaleozoic basin fill. The facies and microfacies analysis together with chemostratigraphy of theses rocks in Chupinguaia and Pimenta Bueno Region, confirmed the occurrence of pinkish dolostone that overlie glaciogenic diamictite, previously interpreted as alluvial fan. Previous works reported δ13C negative excursions, confirmed in this work as well, ranging from -4.6 e -3,8‰VPDB in Chupinguaia, and average of -3,15‰VPDB in Pimenta Bueno. This sedimentation and chemostratigraphic pattern, uncommon in paleozoic rocks, is widely found in the anomalous neoproterozoic carbonates. In the Southern Amazon Craton, Mato Grosso State, rocks with the same features were described as cap carbonates related to the Marinoan Glaciation (635 Ma). Therefore this work considers this dolostones at the same context of the cap carbonate in Mato Grosso. Additionally we stand out the sharp and loaded contact between dolostone and diamictite, which happens in both occurrences, and is seemingly a typical feature of cap carbonates in the Amazon Craton. This paradoxal relationship has been interpreted as rapid change from icehouse to greenhouse conditions, and the loaded contact is attributed to isostatic rebound. The Rondônia cap carbonate presents two facies associations (FA2 and FA3) that overlie glaciomarine deposits (FA1) subdivided in two facies: Polymitic paraconglomerates (Pp) and laminated pebbly sandstone (Asl). The FA2 consists into: peloidal dolomudstone/dolopackstone with planar to quasi-planar laminations and low-angle truncations (Dp), megarriple bedding (Dm) and wave truncated laminations. This association is interpreted as shallow platform deposits wave influenced. This coastal succession is overlaid by FA3, which comprises the facies: dolomudstone/dolopackstone and dolomudstone/ dolograinstone with shale partition (Df) and laminated shaly siltstone (Sl). Df comprises 6m-thick of dolomite with parting shale, showing laterally continuous laminations of fibrous calcite (pseudomorph of gypsum) and dolomite with current wavy lamination. The Sl comprises 5m-thick of planar-laminated shaly siltstone. This association is interpreted as shallow platform deposits tide influenced. Finally, this inner platform succession is overlaid unconformably, in angular contact, by eopaleozoic glaciogenic diamictite. The isotopic values of C and O are negative and reflect the primary signal of C, however it can be considered a slight influence of meteoric diagenesis in the signal. The main shifts in negative signals are associated with meteoric influences, expressed by replacement and pores filling by calcite, and also by its proximity of stratigraphic surfaces, which reflect some patterns of diagenetic alteration, represented by the most negative signals. Differently from Mato Grosso cap carbonate, the Rondônia occurrence presents levels of pseudomorph of evaporites and dolomite with parting shale (rhythmites), order in succession of shallow marine facies, where the dolomites of wavy influenced shallow platform pass up-section to rhythmites and shaly siltstone of tide influenced shallow platform, setting up a retrogradational succession. This new occurrence of cap carbonate has strong implications to the stratigraphy of the base of Parecis Basin, since it excludes these carbonate rocks from the eopaleozoic sequence. Moreover, it provides information that allows reconstruct the coastal paleogeography of neoproterozoic basin that accumulated deposits of Araras Platform, as well extends the postmarinoan events of the Snowball/Slushball Earth hypothesis to the southwesternmost Amazon Craton, exposed in the Rondônia State.Item Acesso aberto (Open Access) Estudos isotópicos (Pb, O, H, S) em zonas alteradas e mineralizadas do depósito cupro-aurífero Visconde, Província Mineral de Carajás(Universidade Federal do Pará, 2013-06-05) SILVA, Antonia Railine da Costa; LAFON, Jean Michel; http://lattes.cnpq.br/4507815620234645; VILLAS, Raimundo Netuno Nobre; http://lattes.cnpq.br/1406458719432983The Cu-AuVisconde deposit is located in the Carajás Mineral Province, northern Brazil, about 15 km east of the world-class Sossego deposit. It lies within a regional WNW–ESE-striking shear zone that marks the contact between the ~2.76 Ga metavolcano-sedimentary rocks of the Carajás Basin and the basement units. Other Cu- Au deposits with similar characteristics (Bacaba, Castanha, Alvo 118, Cristalino, Jatobá) occur along this shear zone. They have been included in the IOCG class, although much controversy exists regarding their genesis, particularly with respect to the mineralization age and source of fluids, ligands and metals. TheVisconde deposit is hosted by Archean rocks, mainly felsic metavolcanic rocks (2968 ± 15 Ma), the Serra Dourada granite (2860 ± 22 Ma), and gabbro/diorites. These rocks are variably sheared and reveal various types of hydrothermal alteration with strong structural control. The earliest types are the sodic (albite-scapolite) and sodic-calcic alterations (albiteactinolite ± tourmaline ± quartz ± magnetite ± scapolite ± epidote), which promoted ubiquitous replacement of the rock primary minerals and precipitaton of disseminated chalcopyrite, pyrite, molybdenite and pentlandite. Oxygen isotope data of representative minerals from these stages show that the hydrothermal fluids were hot (410 – 355°C) and 18O-rich (δ18OH2O = +4.2 to +9.4‰). The following potassic stage is characterized by intense biotitization of the rocks, which developed concomitantly a mylonitic foliation highlighted by the remarkable orientation of biotite flakes. This mica precipitated from fluids with similar oxygen isotope signature to that of the previous stages (δ18OH2O = +4.8 to +7.2‰, at 355°C). Microcline and allanite are other typical minerals of this stage, in addition to chalcopyrite that deposited along the foliation planes. At lower temperatures (230 ± 11°C), 18O-depleted fluids (δ18OH2O = -1.3 to +3.7‰) generated a calcic-magnesian mineral assemblage (albite + epidote + chlorite ± actinolite ± calcite) present mostly in veins and contemporaneous with the main mineralization. The δ18OH2O and δDH2O data indicate that the hydrothermal fluids were initially formed by metamorphic and formation waters, possibly with some contribution of magmatic water. At later stages, there was a considerable influx of surface water. The resulting fluid dilution and cooling might have accounted for the abundant precipitation of sulphides (chalcopyrite ± bornite ± chalcocite ± digenite) mainly in tectonic breccias, whose matrix contains up to 60% sulphides. These breccias represent the most important ore bodies, although sulphides also occur in veins together with sodic-calcic minerals. The mineral associations assign a Cu-Au-Fe-Ni-ETRL-B-P signature to the ore. The sulphur isotope composition (δ34SCDT= -1.2 to 3.4‰) is compatible with a magmatic source for sulphur, which could have been either exsolved from a crystallizing granitic magma or dissolved from sulphides originally present in preexisting igneous rocks. Additionally, it indicates relatively reducing conditions for the fluid. Dating of chalcopyrite by Pb leaching and total dissolution techniques yielded ages of 2736 ± 100 Ma and 2729 ± 150 Ma. Despite the large errors, they point to a Neoarchean age for the mineralization and preclude a Paleoproterozoic mineralizing event. The age of 2746 ± 7 Ma (MSDW = 4.9; Pb evaporation on zircon), obtained for a non-mineralized granitic intrusion present in the deposit area and correlated to the Planalto Suite, was considered as the minimum age for the mineralization. Thus, the Visconde deposit genesis could be related to the 2.76-2.74 Ga transpressive tectonothermal event that was responsible for the inversion of the Carajás basin and generation of granitic magmatism in the Carajás and Transition domains. Such an event should have triggered devolatilazion reactions in the Itacaiunas Supergroup rocks, producing metamorphic fluids or even driving off water trapped in the pores of the basin rocks. These fluids migrated along regional shear zones and reacted with both the basin and basement rocks through which they moved during the ductile regime. The subeconomic concentrations of the Visconde deposit might be the result of the absence of prominent structures that would otherwise favor a greater influx of fluids, as it seems to have been the case in the Sossego and Alvo 118 deposits.Item Acesso aberto (Open Access) Fácies e proveniência de depósitos costeiros da Formação Raizama: evidências do registro Ediacarano-cambriano na faixa Paraguai, região de Nobres, Mato Grosso(Universidade Federal do Pará, 2014-03-10) SANTOS, Hudson Pereira; NOGUEIRA, Afonso César Rodrigues; http://lattes.cnpq.br/8867836268820998Siliciclastic rocks from the Raizama Formation, a basal unit of the Alto Paraguai Group, from the Ediacaran-Cambrian interval (635-541 Ma), is discontinuously occur distributed along the southern margin of the Amazonian Craton within the Paraguay Fold Belt northern segment, west-central of Brazil, Mato Grosso state. This Group unconformably overlies carbonate shelf deposits of the Araras Group, where evidence of Marinoan glacial event (635 Ma) was recorded. The Alto Paraguai Group represents the final stages of the collision between the Paranapanema and Amazonian blocks, leading to the closure of the Clymene Ocean (540-520 Ma). The Raizama Formation is approximately 570 m of thickness and is composed by mudstone, fine to coarse sandstones, and sandstones with dolomitic cement previously interpreted as fluvial-coastal deposits distributed in the lower member (270 m) and upper member (300 m). The facies and stratigraphic studies of this unit in the Nobres region, Mato Grosso state, were mainly focused on the outcropping section of 600 m in the bed of Rio Serragem II, which includes the Serra do Tombador waterfall. In this stratigraphic section, 17 sedimentary facies were described and grouped into five facies association (AF), representative of a progradational coastal sequence beginning with lower shoreface deposits, overlying in correlative conformity the shelf carbonate deposits of the Serra do Quilombo Formation (Araras Group). The AF1 facies consists of sandstones with planar lamination and wave-ripple cross-lamination (microhummocky), individualized by layers of laminated pelite interpreted as lower shoreface deposits. It stands out in the AF1 the first occurrence of centimetric bioturbed levels of Skolithos in Neoproterozoic-Cambrian deposits in the Paraguay Belt. The AF2 facies is composed by sandstones with swaley cross-stratification and plane bedding interpreted as upper shoreface deposits. The AF3 facies is composed by sandstones with tangential and trough cross-stratification with drapes of siltstone/very fine sandstone representative of channel and subtidal bars deposits. The AF4 facies is characterized by sandstones with tangential and sigmoidal cross-stratification, planar to low angle cross-lamination, rhythmites very fine sandstone/siltstone with flaser bedding and mudcracks, organized in metric tidal flat shallowing upward cycles. The AF5 facies is comprised of sandstone with trough cross-bedding characterized by common lags at the base of the association, sandstone with planar to low-angle cross-stratification, interpreted as distal braided rivers, in part reworked by waves. Detrital zircon grains were obtained from AF3 and dated by U-Pb method, resulting in an age 1001±9 Ma interpreted as the age of the maximum deposition of Raizama Formation. Combined with this analysis, the NE-SE paleocurrents show that source area of these sediments would be the Sunsas Fold Belt, SW of the Amazonian Craton not being discarded contributions coming from the NW part of this Craton. The obtained Mesoproterozoic age has predominantly served to unravel the provenance of Raizama Formation. Whereas dating from the base of Araras Group, around 627-622 Ma, associated with the clear presence of the ichnogenus Skolithos, suggests that the age of this unit is closer to the limit with the Lower Cambrian. Trace fossils from the Proterozoic are characterized almost exclusively by horizontal traces, while vertical bioturbation are virtually absent throughout the Neoproterozoic. This inference is confirmed by the maximum age of 541 Ma obtained for Diamantino Formation, which overlies the studied unit. The radiometric data combined with paleoenvironmental interpretation, including the record of the first burrowing activities in Paraguai Fold Belt, opens up perspectives to understand in greater detail the sequence of events that typify the Ediacaran-Cambriam boundary strata of Brazil, still poorly known.Item Acesso aberto (Open Access) Geologia, geoquímica e petrologia magnética do magmatismo básico da área de Nova Canadá (PA), Província Carajás(Universidade Federal do Pará, 2013-08-29) MARANGOANHA, Bhrenno; OLIVEIRA, Davis Carvalho de; http://lattes.cnpq.br/0294264745783506Through geologic mapping of the Nova Canadá area, was possible to individualize two mafic units, typified for diabase dikes, isotropic, and extensive bodies of amphibolites with nematoblastic and granoblastic textures, outcropping only in the southwestern part of the area. Both units cross-cut granitoids of Xingu Complex and Sapucaia greenstone belts sequence. They are classified as subalkaline tholeiitic basalts. Diabase dikes are divided into three varieties, namely hornblende-gabbronorite, gabbronorite and norite, being the differences between these ones only concerned the modal contents of amphibole, ortho- and clinopyroxene, once petrographically, they don’t show significant differences. They consist of plagioclase, ortho-/clinopyroxene, amphibole, Fe-Ti oxides and olivine; they show a moderate fractional pattern REE and unremarkable negative Eu anomaly. Tectonically, they are related to a continental intraplate environment, and show OIB and E-MORB-types signatures. On the other hand, the amphibolites show a flat REE pattern and an absence of Eu anomaly. They are classified as island arc tholeiites and show N-MORB-type signature. This lithotype includes plagioclase, amphibole, opaque minerals, titanite and biotite as main mineralogical phases. The mineral chemistry shows in the diabases no significant variation between plagioclase core and rim, being classified as labradorite, with rare andesine and bytownite; the amphibole shows a compositional gradation from Fe-hornblende to actinolite with increasing silica. In the amphibolites, the plagioclase shows a wide compositional variation, from oligoclase to bytownite in the foliated rocks; in the amphibolites less/no foliated, there is only sodic andesine. Pyroxene is only found in the diabase dikes and exhibits considerable variation compositional, showing a magnesium content increasing in the cores; the iron and calcium contents increase toward the rims; it is classified as augite, pigeonite (clinopyroxene) and enstatite (orthopyroxene). Diabase dikes have titanomagntite, magnetite and ilmenita as main Fe-Ti oxides. Textural analyses of these oxides allowed identifying five distinct forms of ilmenite in the diabase dikes: trellis ilmenite, sandwich ilmenite, patch ilmenite, individual ilmenite, internal and external composite ilmenite. Texture features suggest that titanomagnetite and individual and external composite ilmenite crystallized in early magmatic stage. During the subsolidus stage, titanomagnetite was transformed by oxidation-exsolution in intergrowths of almost pure magnetite and ilmenite (sandwich, patch, trellis and internal composite ilmenite). Amphibolites have ilmenite as the only Fe-Ti oxide mineral, that occurs as individual ilmenite, and it is always associated to amphibole and titanite. Norites and gabbronorites are characterized by the highest values of the magnetic susceptibility (MS); these varieties exhibit the highest modal opaque minerals content, having primary titanomagnetite as mineralogical phase. Hornblende-gabbronorites exhibit the moderate values of the MS, and amphibolites, the lowest ones. The negative correlation between MS values with modal ferromagnesian contents of the diabases shows that paramagnetic minerals (amphibole and pyroxene) don’t have significant influence in the magnetic behavior in these rocks. In contrast, the positive correlation between these variables, of the amphibolites, suggests these mineral phases are the main responsible for its values of the MS. Geothermobarometric data obtained from titanomagnetite-ilmenite pair in the diabase dikes show temperature and oxygen fugacity conditions (1112°C and -8,85, respectively) close to NNO buffer.Item Acesso aberto (Open Access) Geologia, petrografia e geoquímica da associação tonalitotrondhjemito-granodiorito (TTG) do extremo leste do subdomínio de transição, Província Carajás(Universidade Federal do Pará, 2013-07-31) SANTOS, Patrick Araujo dos; DALL'AGNOL, Roberto; http://lattes.cnpq.br/2158196443144675The eastern border of the Transition Subdomain of the Carajás Province is constituteddominantly of Archean tonalite-trondhjemite-granodiorite (TTG). Deformed monzogranites, similar to the Planalto granite suite, and metagabbros inserted in association mafic-enderbitic also occur. Paleoproterozoic isotropic granites and mafic dykes devoid of significant deformation crosscut the Archean lithologies. The TTGs are exposed as blocks or as flat outcrops in areas of low relief and commonly include quartz-diorite enclaves. The TTG rocks display gray colour and are generally medium-grained, showing compositional banding or, sometimes, homogeneous aspect. They show commonly a NW-SW to E-W trending foliation with vertical to subvertical dips and were submitted to NE-SW stress. Locally, it was identified a NE-SW foliation transposed to E-W along shear zones. In some instances, they exhibit mylonitic to protomilonitics features, registered in the oval form of plagioclase porphyroclasts or boudinated leucogranitics veins. Two petrographic varieties are recognized for this association: biotite-trondjhemite and subordinate biotite-granodiorites, both have similar mineralogical and textural aspects and are characterized by a poorly preserved igneous texture, partially overwritten by an intense recrystallization. EDS analyses revealed that the plagioclase is a calcic oligoclase (An27-19), with Or ranging from 0.6 - 2.3%. The biotites are ferromagnesian, with dominance of Fe over Mg (Fe / [Fe + Mg] ranging from 0.54 to 0.59) and the analyzed epidote presents pistacite contents ranging from 23 to 27.6 % and plot mostly in the range of magmatic epidotes. The trondhjemite shows all typical characteristics of Archean TTG suites. They have high La/Yb and Sr/Y ratios, suggesting they were derived from the partial melting of garnet amphibolite sources at high pressures (ca. 1.5 GPa) or, at least, that their magmatic evolution was controlled by the fractionation of garnet and possibly amphibole, without significant influence of plagioclase. The studied TTGs show similarities with Mariazinha tonalite and Mogno trondjemite, of the Rio Maria Domain, Colorado trondhjemite and, in at a lesser degree, to the Rio Verde trondhjemite, of the Carajás Domain. The granodiorites display a calc-alkaline signature and shows LILE enrichment, specifically K²O, Rb and Ba, when compared to the trondhjemites, but still preserving some geochemical features of the TTG. The geochemical data indicate that the trondhjemite and granodiorite are not related by fractional crystallization. An origin of the granodiorite by partial melting of the TTG rocks is also discarded. The granodiorite could, however, result of contamination of TTG magmas by lithosphere metasomatism or assimilation of sediments from subducted oceanic crust along trondhjemite liquid genesis. In the eastern portion of the mapped area, it was identified a small, E-W trending granite stock clearly controlled by shear zones. The rocks have mylonitic textures, characterized by ovoid-shaped feldspar porphyroclasts, wrapped by recrystallized quartz and mica. These granitic rocks have geochemical signatures of reduced A-type granites and are similar to the Planalto granite suite. Boulders of mafic rocks crop out locally in the northern portion of the area. These rocks show a dominant granoblastic texture, and are mainly composed of amphibole and plagioclase, with subordinate biotite and quartz. In the northern part of the mapped area, it was identified a body of isotropic granite without significant deformation and showing locally rapakivi textures. This granitic pluton was correlated to the Paleoproterozoic A-type granites, represented in the Carajás Domain by the Serra dos Carajás suite and Rio Branco Granite. These granites were not studied in detail. The geological and geochemical aspects shown by the Archean granitoids identified in the eastern part of the Transition Subdomain implies in the existence of significant TTG rocks in the Transition Subdomain. This reinforces the hypothesis that the Transition Subdomain could represent an extension of the Rio Maria Domain, but affected by crustal reworking events in the Neoarchean.Item Acesso aberto (Open Access) Geologia, petrografia e geoquímica dos granitóides arqueanos de Sapucaia - Província Carajás-PA(Universidade Federal do Pará, 2013) TEIXEIRA, Mayara Fraeda Barbosa; DALL'AGNOL, Roberto; http://lattes.cnpq.br/2158196443144675Geological mapping performed in the eastern portion of the Transition Subdomain, Carajás Province, southern of Canaã dos Carajás and the northern of Sapucaia cities, allowed the identification, individualization and characterization of a variety of Archean rocks, previously encompassed in the Xingu Complex. The oldest unit identified in this area is a hornblende tonalite, correlated to São Carlos Tonalite (~2.93 Ga), which is exposed as blocks or outcrop and commonly present foliation (NW-SE to E-W) or homogeneous aspect. Its geochemical signatures differ from the typical Archean tonalite-trondhjemite-granodiorite (TTG) associations due to show enrichment in TiO2, MgO and CaO, low contents of Sr, and Rb contents similar to samples with lower concentrations of silica, which are reflected in higher Rb/Sr ratios and lower Sr/Ba ratios. The REE patterns reveal low to moderate fractionation of HREE compared to LREE, and discrete or moderate negative Eu anomalies. It is stratigraphycally followed by TTG association correlated to Colorado Trondhjemite (~2.87 Ga) which displays gray color, medium-grained, and commonly a NW-SE to E-W foliation. In the southern of area, outcrops a body of 40 km 2, which comprises a small mountain of porphyritic leucogranodioritic rocks named Pantanal Leucogranodiorite . It is emplaced at TTG association and crosscutted, on its western portion, by deformed leucogranites. The Pantanal Leucogranodiorite shows peraluminous character and calc-alkaline affinity, with high contents of Ba and Sr. The REE patterns show nosignificant Eu anomalies and HREE are strongly fractionated, which is geochemically similar to Guarantã Suite (~2.87 Ga) from the Rio Maria Domain. Its origin may be related to low degrees of melting of TTG, probably accompanied by interaction with fluids enriched in K, Ba and Sr, derived from a metasomatized mantle. The leucogranites exhibit A-type geochemical signature and reduced character, and may have originated from the melt of dehydrated peraluminous calcic-alkaline rocks, during the Neoarchean. In the eastern portion of the Pantanal Leucogranodiorite was also identified ahornblende-biotite monzogranite which is geochemically similar to oxidized A-type granites, correlated to Neoarchean Vila Jussara Suite. Also, it correlated to Neoarchean subalkaline magmatism in the northern area, occur two granitic stocks. They comprise (i) tonalite to granodiorite with geochemical signature similar to oxidized A-type granites and show affinity with Vila Jussara Suite; and (ii) monzogranites which show reduced A-type granites signature and could be compared to Planalto Suite. At northern of the study area was identified an association of mafic-enderbitic rocks which comprises intensely deformed and recrystallized hornblende norite, pyroxene-hornblende gabbros, pyroxeneix hornblende monzonite, hornblende gabbros, amphibolites and enderbites, which are represented in the geological map as a WNW-ESE small elongated body , and a semicircular body controlled by shear zones. The textures observed in these rocks indicate that recrystallization occurs under relatively high temperatures, 6000C or above, and those rocks show metamorphic features. The geochemical behavior of these rocks suggests that the hornblende-norite, hornblende-gabbros and amphibolites are tholeiitic subalkalines, whereas enderbites, pyroxene-hornblende gabbro and pyroxene-hornblende monzonite exhibit calcalkaline signature. The low La/Yb ratios for mafic rocks indicate low degree of fractionation, whereas the high La/Yb ratios for enderbites reveal significant fractionation of HREE during formation and differentiation of its magmas, and the concavity of HREE pattern indicates probably influence of amphibole fractionation during its evolution. In the central and northcentral of area was recognized biotite-monzogranites with peraluminous and calc-alkaline signature and distinct REE patterns, which allowed us to distinguish two groups. The first shows higher REE enrichment, weak enrichment in LREE relative to HREE, and exhibit moderate negative Eu anomalies, indicating no significant fractionation of phases enriched in HREE and show possibly affinity with Bom Jesus Granite from Canaã dos Carajás area. The second group shows a sharp fractionation of HREE relative to LREE, with discrete or absent Eu anomalies, and concave HREE patterns indicating that amphibole was important phase during the fractionation of these rocks, like Serra Dourada and Cruzadão granites, also located in the Canaã dos Carajás area. This comparison should be enhanced as soon as further geochemical and geochronological data are available in order to a correlation can be evaluated.Item Acesso aberto (Open Access) Geologia, petrografia e geoquímica e suscetibilidade magnética do Granito Paleoproterozoico São João, Sudeste do Cráton Amazônico, Província Carajás(Universidade Federal do Pará, 2013-06-04) LIMA, Paulo Henrique Araújo; LAMARÃO, Claudio Nery; http://lattes.cnpq.br/6973820663339281The São João granite (SJG) is an anorogenic batholith of circular form, with an area of approximately 160 km2, which cuts Archean units of the Rio Maria Granite-Greenstone Terrain, southeastern Amazonian Craton. It consists of four distinct petrographic facies: biotite-amphibole monzogranite (BAMG), biotite-amphibole syenogranite (BASG), amphibole-biotite monzogranite to syenogranite (ABMSG) and biotite monzogranite to syenogranite (BMSG). The SJG has a metaluminous to weakly peraluminous nature, FeOt/(FeOt+MgO) ratios varying from 0.94 to 0.99 and K2O/Na2O from 1 to 2, shows geochemical affinities with the intraplate granites, A-type granites of A2 subtype and ferrous granites, suggesting a crustal source for its origin. The SJG has higher contents of LREE compared to HREE and a sub-horizontal pattern for the latter. The negative anomalies of Eu rising from less evolved towards more evolved rocks (BAMG → BASG→ ABMSG→ BMSG). Magnetic susceptibility data (MS) allowed the identification of six populations with different magnetic characteristics, where the highest values of MS relate to the less evolved facies and the lowest to the more evolved facies. The comparison between SJG and the granite suites of the Carajás Province shows that it displays strong geological, petrographic, geochemical and MS similarities with the granites of the Serra dos Carajás suite, and may be preliminarily included in the same.