Dissertações em Farmacologia e Bioquímica (Mestrado) - FARMABIO/ICB
URI Permanente para esta coleçãohttps://repositorio.ufpa.br/handle/2011/13299
Navegar
Navegando Dissertações em Farmacologia e Bioquímica (Mestrado) - FARMABIO/ICB por Assunto "Anti-infecciosos"
Agora exibindo 1 - 1 de 1
- Resultados por página
- Opções de Ordenação
Item Acesso aberto (Open Access) Efeito da temperatura e molaridade na avaliação das atividades antimicrobiana, citotóxica e antioxidante do bio-óleo da semente do açaí (Euterpe oleracea, Mart.)(Universidade Federal do Pará, 2024-08) SILVA, Iago Castro da; MACHADO, Nélio Teixeira; http://lattes.cnpq.br/5698208558551065; MONTEIRO, Marta Chagas; http://lattes.cnpq.br/6710783324317390; https://orcid.org/0000-0002-3328-5650Açaí, a fruit from the Amazon, is valuable both economically and nutritionally. Its seeds, which are typically discarded, can be converted into bio-oil through pyrolysis (a process of thermochemical degradation of residual biomass), offering a sustainable alternative to fossil fuels. This study explores how temperature and molarity with Potassium Hydroxide (KOH) and Hydrochloric Acid (HCl), which are chemical impregnation reagents in the process, affect the antimicrobial, antioxidant, and cytotoxic activities of the produced bio-oil. Tests were conducted using Gas Chromatography coupled with Mass Spectrometry (GC-MS) and assays to evaluate antimicrobial, antioxidant, and cytotoxic activities at different temperatures (350, 400, and 450 °C) and molarities (0.5 M, 1.0 M, and 2.0 M). Phenolic compounds were the most abundant in the bio-oil (55.70%), followed by cyclic and aromatic hydrocarbons (11.89%) and linear hydrocarbons (9.64%). Despite a reduction in oxygenated compounds, the bio-oil retained bacteriostatic activity against Escherichia coli and Staphylococcus aureus across various temperature ranges, with notable effectiveness at 350 °C. Antioxidant activity was highest at 350 °C and at lower molarities. Furthermore, lower concentrations of acidic impregnation exhibited cytotoxic effects at high temperatures. Thus, bio-oil from açaí seeds generated through pyrolysis shows potential for antioxidant and antimicrobial activities, suggesting feasibility for further testing in dilutions with lower cytotoxicity.