Logo do repositório
Tudo no RIUFPA
Documentos
Contato
Sobre
Ajuda
  • Português do Brasil
  • English
  • Español
  • Français
Entrar
Novo usuário? Clique aqui para cadastrar. Esqueceu sua senha?
  1. Início
  2. Pesquisar por Assunto

Navegando por Assunto "Photovoltaic power generation"

Filtrar resultados informando as primeiras letras
Agora exibindo 1 - 1 de 1
  • Resultados por página
  • Opções de Ordenação
  • Carregando...
    Imagem de Miniatura
    DissertaçãoAcesso aberto (Open Access)
    Previsão de geração de energia fotovoltaica utilizando transformação de séries temporais em imagens e redes neurais convolucionais bidimensionais
    (Universidade Federal do Pará, 2023-10-26) MONTEIRO, Diego Ramiro Melo; CASTRO, Adriana Rosa Garcez; http://lattes.cnpq.br/5273686389382860
    Este trabalho apresenta uma nova abordagem baseada em Rede Neural Convolucional Bidimensional (Convolutional Neural Network – CNN) e técnicas de transformação de séries temporais em imagens, como Campo Angular Gramiano (Gramian Angular Field – GAF) e Gráfico de Recorrência (Recurrence Plot – RP), para previsão em curto prazo da geração de energia elétrica de uma microusina fotovoltaica conectada à rede elétrica, localizada no Centro de Excelência em Eficiência Energética da Amazônia – CEAMAZON, da Universidade Federal do Pará (UFPA). As técnicas de GAF e de RP foram utilizadas para transformação das séries temporais em imagens para serem utilizadas como entrada para a CNN. A previsão de geração de energia elétrica com maior precisão possibilita ao usuário conhecer com maior grau de acerto quais os possíveis custos para implantação da rede e os prazos para retorno financeiro, além de avaliar com maior assertividade a disponibilidade de carga que poderá ser conectada ao sistema. Os resultados da previsão com a utilização de GAF e RP em rede CNN 2D foram comparados com resultados utilizando outros tipos de rede neurais já consolidadas na área, como a Perceptron Multicamadas e a CNN 1D, tendo a CNN 2D obtido em alguns casos valores RMSE próximos ou um pouco inferiores, mostrando assim a aplicabilidade da utilização de imagens obtidas através de transformação das séries temporais de energia fotovoltaica em rede CNN 2D para o problema.
Logo do RepositórioLogo do Repositório
Nossas Redes:

DSpace software copyright © 2002-2025 LYRASIS

  • Configurações de Cookies
  • Política de Privacidade
  • Termos de Uso
  • Entre em Contato
Brasão UFPA