Use este identificador para citar ou linkar para este item:
https://repositorio.ufpa.br/jspui/handle/2011/15815
Tipo: | Dissertação |
Data do documento: | 5-Jul-2023 |
Autor(es): | QUARESMA, Luciano José Barbosa |
Afiliação do(s) Autor(es): | UFPA - Universidade Federal do Pará |
Primeiro(a) Orientador(a): | FEIO, Waldeci Paraguassu |
Primeiro(a) coorientador(a): | REIS, Marcos Allan Leite dos |
Título: | Desenvolvimento de sensor piezorresistivo nanoestruturado impresso em 3D |
Agência de fomento: | CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior |
Citar como: | QUARESMA, Luciano José Barbosa. Desenvolvimento de sensor piezorresistivo nanoestruturado impresso em 3D. Orientador: Waldeci Paraguassu Feio. 2023. 115 f. Dissertação (Mestrado em Ciência e Engenharia de Materiais) - Campus Universitário de Ananindeua, Universidade Federal do Pará, Ananindeua, 2023. Disponível em: https://repositorio.ufpa.br/jspui/handle/2011/15815. Acesso em:. |
Resumo: | O surgimento de fábricas inteligentes baseadas na Indústria 4.0 aumenta a automação e a otimização dos processos industriais nas cadeias de produção. Neste contexto, a integração entre sistemas físicos e digitais depende de sensores inteligentes, com maior sensitividade e integrados pela Internet das Coisas (IoT). A literatura indica que sensores piezorrresistivos podem ser produzidos por manufatura aditiva (MA) e nanoestruturados com nanotubos de carbono (NTCs), os quais geram um sistema nanoeletromecânico (NEMS) após sua dispersão no material. Assim, este trabalho apresenta o desenvolvimento de um sensor piezorrresistivo nanoeletromecânico de baixo custo, produzido pela aplicação de camadas de NTCs sobre peças de poli(acrilonitrila-butadieno-estireno) (ABS) impressas por modelagem de deposição fundida (FDM), integrável à Indústria 4.0 via IoT através de microcontroladores ESP32. Para isso, foi desenvolvido um dispositivo sensor do tipo diafragma de dimensões 17, 8, 17, 8 e 5, 5 𝑚𝑚, cuja deformação do elemento sensor ocorre pela pressão de um botão. Após a impressão por MA das partes do dispositivo, NTCs de paredes múltiplas funcionalizados com ácido carboxílico (NTCPM-COOH) foram dispersos por banho ultrassônico em uma solução com concentração de 1 𝑚𝑔/𝑚𝑙 de acetona e dimetilformamida, em proporção de 1 ∶ 1 em volume, para revestimento dos elementos sensores em camadas sucessivas com um aerógrafo. Após a deposição de cinco camadas de NTCs no substrato polimérico, medidas de resistência elétrica obtidas com um picoamperímetro mostraram a percolação do material na segunda camada, com valores iniciais acima de 10 𝑇 Ω e finais abaixo de 100 𝑘Ω após a quinta camada, o que ocorre pela formação de canais de condução originados do arranjo aleatório dos NTCs na superfície do ABS, como observado por Microscopia Eletrônica de Varredura por Emissão de Campo (MEV-FEG). Após isso, a resistência elétrica foi medida durante ciclos de pressão com carga progressiva e com carga máxima, nos quais os elementos sensores apresentaram faixa de operação de 139, 97 ± 0, 46 a 363, 25 ± 0, 39 𝑘𝑃 𝑎. No primeiro teste, a sensitividade mínima de 0, 1 % e máxima de 1, 16 %. No segundo, a maior sensitividade média foi 0, 63±0, 04 % e os menores tempos de resposta e de recuperação médios foram 0, 55±0, 29 𝑠 e 12, 29 ± 1, 44 𝑠, respectivamente. A espectroscopia Raman mostrou a sobreposição dos sinais de cada material, em particular da banda do ABS em 1447 𝑐𝑚−1 que aparece destacada entre as bandas 𝐷 e 𝐺 dos NTCs. Com base na resposta piezorrresistiva que o material apresentou a partir do NEMS gerado pela deposição de NTCs sobre o ABS, este conceito de uma célula de carga pode ser integrado à uma placa microcontroladora ESP32, tornando-o um dispositivo inteligente com potencial aplicação em sistemas industriais 4.0. |
Abstract: | The emergence of smart factories based on Industry 4.0 increases the automation and optimization of industrial processes in production chains. In this context, the integration between physical and digital systems depends on intelligent sensors, with greater sensitivity and integrated by the Internet of Things (IoT). The literature indicates that piezoresistive sensors can be produced by additive manufacturing (AM) and nanostructured with carbon nanotubes (NTCs), which generate a nanoelectromechanical system (NEMS) after its dispersion in the material. Thus, this work presents the development of a low-cost piezoresistive nanoelectromechanical sensor, produced by applying layers of NTCs on poly(acrylonitrile-butadiene-styrene) (ABS) parts printed by fused deposition modeling (FDM), integrable to the Industry 4.0 via IoT through ESP32 microcontrollers. For this, a diaphragm-type sensor device with dimensions 17.8, 17.8 and 5.5 𝑚𝑚 was developed, whose sensor element deformation occurs by pressing a button. After MA printing of the device parts, carboxylic acid functionalized multi-walled CNTs (MWCNT-COOH) were dispersed by ultrasonic bath in a solution with a concentration of 1 𝑚𝑔/𝑚𝑙 of acetone and dimethylformamide, in a ratio of 1 ∶ 1 in volume, for coating the sensor elements in successive layers with an aerograph. After the deposition of five layers of CNTs on the polymeric substrate, measurements of electrical resistance obtained with a picoammeter showed the percolation of the material in the second layer, with initial values above 10 𝑇 Ω and final values below 100 𝑘 𝑂𝑚𝑒𝑔𝑎 after the fifth layer, which occurs by the formation of conduction channels originating from the random arrangement of CNTs on the ABS surface, as observed by Field Emission Scanning Electron Microscopy (FEG-SEM). After that, the electrical resistance was measured during pressure cycles with progressive load and with maximum load, in which the sensor elements presented an operating range of 139.97 ± 0.46 to 363.25 ± 0.39 𝑘𝑃 𝑎. In the first test, the minimum sensitivity of 0.1 % and maximum sensitivity of 1.16 %. In the second, the highest average sensitivity was 0.63 ± 0.04 % and the lowest average response and recovery times were 0.55 ± 0.29 𝑠 and 12.29 ± 1.44 𝑠, respectively. Raman spectroscopy showed the overlapping of the signals of each material, in particular the ABS band at 1447 𝑐𝑚−1 which appears prominently between the NTCs 𝐷 and 𝐺 bands. Based on the piezoresistive response that the material presented from the NEMS generated by the deposition of NTCs on ABS, this concept of a load cell can be integrated into an ESP32 microcontroller board, making it an intelligent device with potential application in industrial systems. 4.0. |
Palavras-chave: | Indústria 4.0 Nanotubos de Carbono Manufatura aditiva Industry 4.0 Carbon Nanotubes Additive manufacturing |
Área de Concentração: | CARACTERIZAÇÃO, DESENVOLVIMENTO E APLICAÇÃO DE MATERIAIS |
Linha de Pesquisa: | MATERIAIS NANOESTRUTURADOS |
CNPq: | CNPQ::ENGENHARIAS::ENGENHARIA DE MATERIAIS E METALURGICA |
País: | Brasil |
Instituição: | Universidade Federal do Pará |
Sigla da Instituição: | UFPA |
Instituto: | Campus Universitário de Ananindeua |
Programa: | Programa de Pós-Graduação em Ciência e Engenharia de Materiais |
Tipo de Acesso: | Acesso Aberto Attribution-NonCommercial-NoDerivs 3.0 Brazil |
Fonte: | Disponível na internet via Sagitta |
Aparece nas coleções: | Dissertações em Ciência e Engenharia de Materiais (Mestrado) - PPGCEM/Ananindeua |
Arquivos associados a este item:
Arquivo | Descrição | Tamanho | Formato | |
---|---|---|---|---|
Dissertacao_DesenvolvimentoSensorPiezorresistivo.pdf | 5,03 MB | Adobe PDF | Visualizar/Abrir |
Este item está licenciado sob uma Licença Creative Commons