Please use this identifier to cite or link to this item: https://repositorio.ufpa.br/jspui/handle/2011/16706
metadata.dc.type: Dissertação
Issue Date: 30-Dec-2023
metadata.dc.creator: FERREIRA, Jamelly Freitas
metadata.dc.contributor.advisor1: KLAUTAU JÚNIOR, Aldebaro Barreto da Rocha
metadata.dc.contributor.advisor-co1: GOMES, Diego de Azevedo
Title: Beam-selection otimizado por aprendizado de máquina : uma abordagem multimodal
Citation: FERREIRA, Jamelly Freitas. Beam-selection otimizado por aprendizado de máquina : uma abordagem multimodal. Orientador: Aldebaro Barreto da Rocha Klautau Júnior.; Coorientador: Diego de Azevedo Gomes. 2023. 50 f. Dissertação (Mestrado em Engenharia Elétrica) - Instituto de Tecnologia, Universidade Federal do Pará, Belém, 2023. Disponível em:https://repositorio.ufpa.br/jspui/handle/2011/16706 . Acesso em:.
metadata.dc.description.resumo: Esta dissertação tem como objetivo investigar a utilização de modelos de aprendizado de máquina usando dados multimodais como entrada para otimizar o processo de “Beam-Selection”em redes baseadas em ondas milimétricas. O uso de Deep Learning tem se intensificado em diferentes áreas, sendo possível obter performance igual ou superior à humana, desta forma seu uso mostra-se promissor também em cenários de comunicação sem fio. Neste trabalho foram usados dados de diferentes naturezas o que se mostrou conveniente ao passo que é possível ajustar o modelo de acordo com a qualidade/disponibilidade destes dados. Após execução dos experimentos, e obtencão dos resultados, foi observado que é possível obter significativa performance em diferentes métricas, mesmo com dados mais simples como Imagem e Coordenada.
Abstract: This dissertation aims to investigate the use of machine learning models using multimodal data as input to optimize the Beam-Selection process in millimeter-wave based networks. The use of Deep Learning has intensified in different areas, and it is possible to obtaing performance equal or superior to human performance, so its use is also promising in wireless communication scenarios. This work used data from different sources, which proved to be convenient since it is possible to adjust the model according to the quality/availability of this data. After executing the experiments and obtaining the results, it was observed that it is possible to obtain significant performance in different metrics even with simpler data such as image and coordinate.
Keywords: Aprendizado de máquina
Aprendizagem profunda
Redes neurais
Seleção de feixe
Machine learning
Deep learning
Neural network
Beam-selection
metadata.dc.subject.areadeconcentracao: TELECOMUNICAÇÕES
metadata.dc.subject.cnpq: CNPQ::ENGENHARIAS::ENGENHARIA ELETRICA::TELECOMUNICACOES
metadata.dc.publisher.country: Brasil
Publisher: Universidade Federal do Pará
metadata.dc.publisher.initials: UFPA
metadata.dc.publisher.department: Instituto de Tecnologia
metadata.dc.publisher.program: Programa de Pós-Graduação em Engenharia Elétrica
metadata.dc.rights: Acesso Aberto
Attribution-NonCommercial-NoDerivs 3.0 Brazil
metadata.dc.source.uri: Disponível via internert através do correio eletrônico: bibliotecaitec@ufpa.br
Appears in Collections:Dissertações em Engenharia Elétrica (Mestrado) - PPGEE/ITEC

Files in This Item:
File Description SizeFormat 
Dissertacao_BeamselectionOtimizadoAprendizado.pdf3,1 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons