Please use this identifier to cite or link to this item:
https://repositorio.ufpa.br/jspui/handle/2011/17230
metadata.dc.type: | Dissertação |
Issue Date: | 27-Apr-2020 |
metadata.dc.creator: | GONÇALVES, Camilo Lélis Assis |
metadata.dc.contributor.advisor1: | BARROS, Fabrício José Brito |
Title: | Detecção e rastreamento de componentes de vagões ferroviários utilizando redes neurais convolucionais e restricões geométricas |
Citation: | GONÇALVES, Camilo Lélis Assis. Detecção e rastreamento de componentes de vagões ferroviários utilizando redes neurais convolucionais e restrições geométricas. Orientador: Fabrício José Brito Barros. 2020. 68 f. Dissertação (Mestrado em Engenharia Elétrica) - Instituto de Tecnologia, Universidade Federal do Pará, Belém, 2020. Disponível em: https://repositorio.ufpa.br/jspui/handle/2011/17230. Acesso em:. |
metadata.dc.description.resumo: | A inspeção de componentes de trem que podem causar descarrilamento possui um papel importante na manutenção ferroviária. A fim de aumentar a produtividade e a segurança, empresas prestadoras de serviços procuram por soluções de inspeção automáticas e confiáveis. Apesar da inspeção automática baseada em visão computacional ser um conceito consolidado, tais aplicações desafiam a comunidade de desenvolvimento em razão de fatores ambientais e logísticos a serem considerados. Este trabalho propõe uma técnica de detecção e estimativa das posições das regiões de dreno presentes em vagões de trem. Nosso detector/rastreador consiste em uma rede neural convolucional e um conjunto de restrições geométricas, que levam em conta a trajetória ideal dos componentes de interesse dos vagões e as distâncias entre eles. Detalhamos os procedimentos de treinamento e validação, juntamente com as métricas utilizadas para aferir a performance do sistema proposto. Os resultados apresentados são comparados com outras duas técnicas, e exibem um bom custo‑benefício entre confiança e complexidade computacional para a detecção dos componentes de interesse. |
Abstract: | A inspeção de componentes de trem que podem causar descarrilamento possui um papel importante na manutenção ferroviária. A fim de aumentar a produtividade e a segurança, empresas prestadoras de serviços procuram por soluções de inspeção automáticas e confiáveis. Apesar da inspeção automática baseada em visão computacional ser um conceito consolidado, tais aplicações desafiam a comunidade de desenvolvimento em razão de fatores ambientais e logísticos a serem considerados. Este trabalho propõe uma técnica de detecção e estimativa das posições das regiões de dreno presentes em vagões de trem. Nosso detector/rastreador consiste em uma rede neural convolucional e um conjunto de restrições geométricas, que levam em conta a trajetória ideal dos componentes de interesse dos vagões e as distâncias entre eles. Detalhamos os procedimentos de treinamento e validação, juntamente com as métricas utilizadas para aferir a performance do sistema proposto. Os resultados apresentados são comparados com outras duas técnicas, e exibem um bom custo‑benefício entre confiança e complexidade computacional para a detecção dos componentes de interesse. |
Keywords: | Visão computacional Detecção e rastreamento de objetos Aprendizagem profunda Aprendizado de máquina Computer vision, Object tracking Deep learning Machine learning |
metadata.dc.subject.areadeconcentracao: | COMPUTAÇÃO APLICADA |
metadata.dc.subject.linhadepesquisa: | INTELIGÊNCIA COMPUTACIONAL |
metadata.dc.subject.cnpq: | CNPQ::ENGENHARIAS::ENGENHARIA ELETRICA |
metadata.dc.publisher.country: | Brasil |
Publisher: | Universidade Federal do Pará |
metadata.dc.publisher.initials: | UFPA |
metadata.dc.publisher.department: | Instituto de Tecnologia |
metadata.dc.publisher.program: | Programa de Pós-Graduação em Engenharia Elétrica |
metadata.dc.rights: | Acesso Aberto Attribution-NonCommercial-NoDerivs 3.0 Brazil |
metadata.dc.source.uri: | Disponível na internet via correio eletrônico: bibliotecaitec@ufpa.br |
Appears in Collections: | Dissertações em Engenharia Elétrica (Mestrado) - PPGEE/ITEC |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Dis_DeteccaoRastreamentoComponentes.pdf | 18,31 MB | Adobe PDF | View/Open |
This item is licensed under a Creative Commons License