Previsão a curto prazo de preço de energia utilizando modelo híbrido com sarimax e xgboost

Carregando...
Imagem de Miniatura

Data

15-05-2025

Afiliação

Título da Revista

ISSN da Revista

Título de Volume

item.page.theme

Tipo de acesso

Acesso AbertoAttribution-NonCommercial-NoDerivatives 4.0 Internationalaccess-logo

Agência de fomento

Contido em

Citar como

ROCHA, Cezar Augusto Figueiredo da. Previsão a curto prazo de preço de energia utilizando modelo híbrido com sarimax e xgboost. Orientadora: Maria Emilia de Lima Tostes. 2025. 60 f. Dissertação (Mestrado em Engenharia Elétrica) - Instituto de Tecnologia, Universidade Federal do Pará, Belém, 2025. Disponível em: https://repositorio.ufpa.br/handle/2011/17938. Acesso em:.

DOI

A previsão eficiente do preço de compra de energia elétrica a curto prazo é um desafio crucial, especialmente no cenário brasileiro, marcado pela alta volatilidade de preços e por um mercado energético dinâmico. As peculiaridades do setor elétrico nacional, como a dependência de fontes renováveis, variações climáticas sazonais e a crescente complexidade da integração de sistemas distribuídos, tornam essa tarefa ainda mais desafiadora. Grande parte dos métodos disponíveis foca na modelagem direta da série temporal, sem explorar plenamente a decomposição estrutural dos dados para aumentar a previsibilidade. Este trabalho propõe um modelo híbrido (SARIMAX-XGBoost) para previsão de curto prazo, combinando o modelo estatístico autorregressivo com médias móveis sazonais (SARIMAX) e o algoritmo de aprendizado extremo por reforço de gradiente (XGBoost). O SARIMAX captura componentes estruturais, como tendências, sazonalidade e efeitos de variáveis externas que estão intrínsecas no próprio histórico da variável alvo, enquanto o XGBoost modela resíduos e padrões complexos não explicados. A previsão final é obtida pela integração das saídas dos dois modelos. A validação foi realizada com dados reais do mercado brasileiro, abrangendo séries históricas de preços de energia elétrica. Os resultados experimentais mostram que o método proposto é eficaz em capturar a volatilidade do mercado, oferecendo previsões precisas e estáveis tanto em precisão quanto em estabilidade.

browse.metadata.ispartofseries

Área de concentração

País

Brasil

Instituição(ões)

Universidade Federal do Pará

Sigla(s) da(s) Instituição(ões)

UFPA

item.page.isbn

Fonte

item.page.dc.location.country

Fonte URI

Disponível na internet via correio eletrônico: bibliotecaitec@ufpa.br