SIBI! EM BREVE O RIUFPA ESTARÁ LIBERADO! AGUARDEM!
 

Caracterização de padrões de descargas parciais em hidrogeradores utilizando técnicas de inteligência computacional

Imagem de Miniatura

Data

24-09-2015

Título da Revista

ISSN da Revista

Título de Volume

item.page.theme

Tipo de acesso

Acesso Abertoaccess-logo

Agência de fomento

CNPq - Conselho Nacional de Desenvolvimento Científico e Tecnológico

Contido em

Citar como

ALVES, Medillin Pereira. Caracterização de padrões de descargas parciais em hidrogeradores utilizando técnicas de inteligência computacional. Orientador: Marcus Vinicius Alves Nunes. 2015. 105 f. Dissertação (Mestrado em Engenharia Elétrica.) - Instituto de Tecnologia, Universidade Federal do Pará, Belém. 2015. Disponível em: http://repositorio.ufpa.br/jspui/handle/2011/8038. Acesso em:.

DOI

Esta dissertação apresenta os experimentos com aplicações de técnicas de Inteligência computacional para caracterização de descargas parciais em hidrogeradores. A classificação das descargas parciais contribui para uma análise prévia de problemas e permite a manutenção preditiva nas máquinas, reduzindo a possibilidade de falhas nas mesmas. Os dados foram coletados de modo online (máquina em operação) na Usina Hidrelétrica de Tucuruí, sendo observados os padrões de descarga interna, de laminação e entre barras. O software IMA-DP, desenvolvido em parceria entre Eletronorte e Cepel, permitiu que esses dados fossem medidos e registrados de maneira rápida, e organizados através dos mapas PRPD (Phase Resolved Partial Discharges). As técnicas de binarização, ANOVA (Analisys of Variance), ACI (Análise de Componentes Independentes) e ACP (Análise de Componentes Principais) foram aplicadas aos sinais para adequar os mesmos ao uso das técnicas de inteligência computacional. O trabalho foi desenvolvido no ambiente IPython usando a biblioteca scikit-learn, a qual possui eficientes algoritmos de inteligência. Os experimentos foram realizados fazendo-se uso das técnicas: KNN (K-Nearest Neighbors.), Floresta Randômica e MVS (Máquinas de Vetores de Suporte). Tais técnicas apresentaram bons resultados com os experimentos realizados, destacando-se aqueles obtidos para MVS que apresentaram os melhores resultados, atingindo uma acurácia de 96.07%, devido possuir mecanismos de seleção das principais variáveis durante o processo de treinamento.

browse.metadata.ispartofseries

Área de concentração

Linha de pesquisa

CNPq

CNPQ::ENGENHARIAS::ENGENHARIA ELETRICA::SISTEMAS ELETRICOS DE POTENCIA

País

Brasil

Instituição

Universidade Federal do Pará

Sigla da Instituição

UFPA

Instituto

Instituto de Tecnologia

Programa

Programa de Pós-Graduação em Engenharia Elétrica

item.page.isbn

Fonte

item.page.dc.location.country

Fonte URI