SIBI! EM BREVE O RIUFPA ESTARÁ LIBERADO! AGUARDEM!
 

Modelagem neural da resistência elétrica dos fornos de redução do alumínio

Imagem de Miniatura

Data

16-10-2015

Título da Revista

ISSN da Revista

Título de Volume

item.page.theme

Tipo de acesso

Acesso Abertoaccess-logo

Agência de fomento

Contido em

Citar como

CONTE, Thiago Nicolau Magalhães de Souza. Modelagem neural da resistência elétrica dos fornos de redução do alumínio.Orientador: Roberto Célio Limão de Oliveira. 2015. 57 f. Dissertação (Mestrado em Engenharia Elétrica. ) - Instituto de Tecnologia, Universidade Federal do Pará, Belém. 2015. Disponível em: http://repositorio.ufpa.br/jspui/handle/2011/8042. Acesso em:.

DOI

Este trabalho avalia dois tipos de Redes Neurais Artificiais na tarefa de modelar dinamicamente o comportamento da resistência elétrica de um forno de redução de alumínio primário. A proposta é utilizar Redes Neurais Multicamada Diretas (RNMD) e Redes Neurais Recorrentes (RNR) para modelar a resistência elétrica do forno. Para cada uma destas Redes Neurais é explorado a sua capacidade de modelar sistemas dinâmicos, seja variando o número de camadas de neurônios, bem como o número de neurônios em cada camada, variando também os sinais de entrada da rede neural, etc. Os dados a serem utilizados na modelagem são oriundos de uma fábrica brasileira de alumínio primário. Esta modelagem pode ser usada para controlar a distância (subir ou descer) entre os eletrodos anodos e catodos do forno de redução que são constituídos principalmente por materiais carbonáceos. Desta forma o sistema de controle possui a tarefa de manter o valor de resistência dentro de faixas aceitáveis de operação procurando sempre garantir estabilidade térmica e consequentemente a produção do alumínio primário, com alto teor de pureza, com base em dados disponíveis online no sistema de controle da fábrica. Através desses eletrodos são injetadas correntes elétricas continuas que, além da eletrólise em si, provocam o aquecimento do banho eletrolítico, elevando a sua temperatura para uma faixa acima de 960 °C. A motivação para o trabalho está na alta complexibilidade do processo de redução do alumínio primário, cuja natureza é não-linear e o mesmo sofre influência de diversas variáveis diretamente ligadas a dinâmica do processo, muitas vezes imperceptíveis aos engenheiros de processo da fábrica, mas que podem ser percebidas por meio das técnicas de inteligência computacional refletindo aproximadamente as diferentes condições operacionais do sistema real.

browse.metadata.ispartofseries

Área de concentração

Linha de pesquisa

CNPq

CNPQ::ENGENHARIAS::ENGENHARIA ELETRICA, CNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO::SISTEMAS DE COMPUTACAO::ARQUITETURA DE SISTEMAS DE COMPUTACAO

País

Brasil

Instituição

Universidade Federal do Pará

Sigla da Instituição

UFPA

Instituto

Instituto de Tecnologia

Programa

Programa de Pós-Graduação em Engenharia Elétrica

item.page.isbn

Fonte

item.page.dc.location.country

Fonte URI