Please use this identifier to cite or link to this item: https://repositorio.ufpa.br/jspui/handle/2011/8235
metadata.dc.type: Tese
Issue Date: 13-Dec-2016
metadata.dc.creator: CARVALHO JÚNIOR, José Gracildo de
metadata.dc.contributor.advisor1: COSTA JÚNIOR, Carlos Tavares da
Title: Métododos de identificação fuzzy para modelos autoregressivos sazonais madiante a função de autocorrelação estendida
metadata.dc.description.sponsorship: 
Citation: CARVALHO JÚNIOR, José Gracildo de. Métododos de identificação fuzzy para modelos autoregressivos sazonais madiante a função de autocorrelação estendida. 2016. 237 f. Orientador: Carlos Tavares da Costa Júnior. Tese (Doutorado em Engenharia Elétrica) - Instituto de Tecnologia, Universidade Federal do Pará, Belém, 2016. Disponível em: http://repositorio.ufpa.br/jspui/handle/2011/8235. Acesso em:.
metadata.dc.description.resumo: Neste estudo, é proposta uma estrategia baseada na metodologia fuzzy para a melhoria do desempenho das previsões de dados mediante um modelo de série temporal. Esta metodologia é concebida para modelagem de processos autoregressivos sazonais de média móvel e pode ser adotada sobre diversas aplicações no mundo real. Por meio da abordagem híbrida, baseada em uma versão da função de autocorrelação fuzzy, a interpolação e as capacidades de generalização de sistemas fuzzy foram exploradas para se obter uma previsão robusta, mesmo considerando séries de curta ou longa duração. A fim de aumentar a precisão do algoritmo de identicação proposto, vários parâmetros de desempenho foram testados e otimizados por simulações computacionais. Os seguintes parâmetros foram considerados nesse processo: o comprimento de trajetória da série histórica, o número de conjuntos fuzzy, e o limite para ativação do suporte dos conjuntos fuzzy triangulares. Observou-se que a função de pertinência triangular contribuiu para a melhoria do desempenho no modelo de previsão. Para demonstrar a eficácia da metodologia proposta, foram implementados quatro estudos de caso a partir de dados disponíveis na literatura. Os resultados confirmaram o bom desempenho do algoritmo proposto, permitindo a obtencão de um erro de previsão pequeno, sobretudo, em comparação com metodologias de identificação parametrica consolidadas na literatura. As projeções produzidas pelo novo método proposto, quando submetidas ao conceito de intervalo de confianca fuzzy, demonstraram uma precisão satisfatoria.
Abstract: In this study, a fuzzy-based strategy for improvement of forecasting performance in data time series analysis is proposed. The designed methodology is target to seasonal autoregressive moving average processes modelling and can be applied to an wide range of real world applications. By means of hybrid approach based on a fuzzy version of correlation functions, the interpolating and the generalization capabilities of fuzzy systems are exploited in order to obtain a robust forecasting, even considering series with missing data points. In order to increase the algorithm accuracy, several design parameters were tested and optimized by computational tests. The following parameters are considered in this process: the length of the trajectory of the time series, the number of fuzzy sets, and the limit for activation of the support of the triangular fuzzy sets. It was observed that the membership function of triangular form lead to improved forecasting performance. A simulation to evaluate the accuracy of the forecasting of a fuzzy seasonal autoregressive model is described. To demonstrate the eectiveness of the proposed methodology, four case studies on data from some public data base was carried-out. The results conrm the improved performance of the proposed algorithm, allowing to obtain a reduced forecasting error in comparison to a conventional statistical methodology and fuzzy, for instance. The projections produced by the new method when subjected to fuzzy condence interval analysis showed satisfactory accuracy.
Keywords: Função de autocorrelação
Modelo autoregressivo sazonal fuzzy
Previsão fuzzy
Autocorrelation function
Fuzzy seasonal autoregressive model
Fuzzy forecasting
metadata.dc.subject.cnpq: CNPQ::ENGENHARIAS::ENGENHARIA ELETRICA::SISTEMAS ELETRICOS DE POTENCIA
CNPQ::CIENCIAS EXATAS E DA TERRA::PROBABILIDADE E ESTATISTICA
metadata.dc.publisher.country: Brasil
Publisher: Universidade Federal do Pará
metadata.dc.publisher.initials: UFPA
metadata.dc.publisher.department: Instituto de Tecnologia
metadata.dc.publisher.program: Programa de Pós-Graduação em Engenharia Elétrica
metadata.dc.rights: Acesso Aberto
Appears in Collections:Teses em Engenharia Elétrica (Doutorado) - PPGEE/ITEC

Files in This Item:
File Description SizeFormat 
Tese_MetodosIdentificacaoFuzzy.pdf2,74 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons