SIBI! EM BREVE O RIUFPA ESTARÁ LIBERADO! AGUARDEM!
 

Uma nova solução para a otimização do despacho econômico e ambiental utilizando metaheurísticas da computação bio-inspirada

Carregando...
Imagem de Miniatura

Tipo

Data

2016

Título da Revista

ISSN da Revista

Título de Volume

item.page.theme

Editora(s)

Universidade Federal do Pará

Tipo de acesso

Acesso Abertoaccess-logo

Contido em

Citação

NASCIMENTO, Manoel Henrique Reis. Uma nova solução para a otimização do despacho econômico e ambiental utilizando metaheurísticas da computação bio-inspirada. 2016. 233 f. Orientador: Marcus Vinicius Alves Nunes. Tese (Doutorado em Engenharia Elétrica) - Instituto de Tecnologia, Universidade Federal do Pará, Belém, 2016. Disponível em: http://repositorio.ufpa.br/jspui/handle/2011/8238. Acesso em:.

DOI

Devido ao crescimento industrial da Região Norte, principalmente do Polo Industrial de Manaus (PIM) e consequentemente o aumento da necessidade de geração de energia, que nesta região é fornecida em mais de 90% de seu total por Usinas Termoelétricas (UTE), tornou-se necessário a implementação de ferramentas computacionais que propiciem ao especialista, ou operador de sistemas elétricos, tomar decisões sobre o despacho de potência ótima de cada unidade geradora, contemplando não somente a redução de custos, mas também a diminuição dos índices de poluição na atmosfera. O Despacho Econômico (DE), ou despacho ótimo, é uma das tarefas mais antigas e importantes na gestão de usinas de energia elétrica, e atualmente, devido às crescentes preocupações com o meio ambiente, este problema vem sendo estendido para a otimização do Despacho Econômico e Ambiental (DEA). Esta tese tem como objetivo geral analisar uma nova proposta de solução para o antigo problema de otimização do DE e do DEA implementada por diversos métodos Determinísticos (Iteração Lambda, Programação Quadrática e Método de Newton) e métodos Heurísticos (Algoritmos Genéticos, Enxame de Partículas, Evolução Diferencial, Recozimento Simulado, Otimização por Lobo Cinzento e Colônia de Abelhas Artificiais) para o problema do DE e para o problema do DEA (Algoritmo Genético de Classificação Não-dominado, NSGA II e NSGA III), considerando o desligamento dos geradores com maior custo de operação, com a consequente redução no custo dos combustíveis. O método do custo incremental e as perdas de transmissão são utilizados para determinar os valores de potência ativa de cada unidade geradora, assegurando o balanço energético entre a potência total gerada, a demanda do sistema elétrico, as perdas, e minimizando, por outro lado, o custo total do combustível, reduzindo as emissões, e ainda melhorando a eficiência não somente dos geradores, mas também da UTE como um todo. A solução proposta nesta tese tem as seguintes contribuições: contempla o desligamento dos sistemas de geração que apresentam maior custo com combustível, reduz os custos totais permitindo uma manutenção preditiva nestas máquinas; determina soluções ótimas para a potência de saída em vários cenários característicos e não característicos das usinas, considerando variações na geração de potência ativa e na redução das emissões de gases poluentes como, NOx e o CO2. Para analisar a viabilidade da solução proposta por esta tese, utilizou-se um conjunto de dez unidades geradoras térmicas como parâmetros para o estudo de caso e três conjuntos de geradores, descritos na literatura, como sistema de teste para validação da robustez da proposta de solução apresentada. Foram aplicados diversos métodos determinísticos e de computação Bio-inspirada para a otimização mono-objetivo e multiobjetivo. Os resultados apresentados na tese, a partir da análise de vários exemplos práticos, mostram as vantagens da nova solução proposta.

Agência de Fomento

FAPEAM - Fundação de Amparo à Pesquisa do Estado do Amazonas

browse.metadata.ispartofseries

item.page.isbn

Fonte

item.page.dc.location.country

Citação

NASCIMENTO, Manoel Henrique Reis. Uma nova solução para a otimização do despacho econômico e ambiental utilizando metaheurísticas da computação bio-inspirada. 2016. 233 f. Orientador: Marcus Vinicius Alves Nunes. Tese (Doutorado em Engenharia Elétrica) - Instituto de Tecnologia, Universidade Federal do Pará, Belém, 2016. Disponível em: http://repositorio.ufpa.br/jspui/handle/2011/8238. Acesso em:.