Clusterização de padrões espaço-temporais de precipitação na Amazônia via deep convolutional autoencoder

Carregando...
Imagem de Miniatura

Data

2023-07-07

Título da Revista

ISSN da Revista

Título de Volume

item.page.theme

Editora(s)

Universidade Federal do Pará

Tipo de acesso

Acesso Abertoaccess-logo

Contido em

Citação

SILVA, Vander Augusto Oliveira da. Clusterização de padrões espaço-temporais de precipitação na Amazônia via deep convolutional autoencoder. Orientador: Raphael Barros Teixeira. 2023. 81 f. Dissertação (Mestrado em Computação Aplicada) – Núcleo de Desenvolvimento Amazônico em Engenharia, Universidade Federal do Pará, Tucuruí, 2023. Disponível em: https://repositorio.ufpa.br/jspui/handle/2011/17389. Acesso em:.

DOI

Estudos utilizando diferentes métodos de aprendizado de máquina para descoberta de conhecimento e reconhecimento de padrões em séries temporais de precipitação são cada vez mais frequentes na literatura. Identificar e analisar padrões em séries temporais de precipitação em uma determinada região é fundamental para seu desenvolvimento socioeconômico. Logo, pode-se afirmar que o conhecimento e compreensão das características pluviométricas das regiões são importantes para viabilizar o planejamento do uso, manejo e conservação dos recursos hídricos. O fenômeno natural da precipitação é um processo fundamental de impacto direto nas bacias hidrográficas e no desenvolvimento humano e ambiental. A variabilidade desse fenômeno produz implicações importantes na navegabilidade dos rios, sobre a abundância do indivíduo e a riqueza das espécies. Nos últimos anos muitos estudos com essa abordagem foram realizados no Brasil, principalmente na região amazônica. Esta pesquisa teve como objetivo desenvolvimento de um método computacional para análise de séries temporais de precipitação utilizando técnicas de machine learning com aprendizado não supervisionado, afim de propor um método capaz de realizar a extração de características complexas dos dados, obtendo um mapa de atributos em baixa dimensionalidade para reconhecimento de padrões, descoberta de regiões homogêneas com relação à precipitação e reconstrução aproximada de séries temporais de precipitação da Amazônia Legal. O modelo de rede neural de aprendizado profundo proposto é treinado para aprender as principais e mais complexas características dos dados originais e apresentá-los em baixa dimensionalidade no espaço latente. Após o treinamento os resultados se mostram promissores, as observações dos dados reconstruídos apresentaram um bom desempenho conforme avaliação da métrica de RMSE e NRMSE com valores resultantes iguais a 0.06610 e 0.3355 respectivamente. A análise da representação dos dados em baixa dimensão foi aplicada e analisada por uma estrutura de clustering usando aglomerativo hierárquico com método de Ward. Essa metodologia também apresentou bons resultados, pois realizou agrupamentos consistentes caracterizando regiões homogêneas com relação aos dados de precipitação. Desta forma, demonstrando que a representação em baixa dimensionalidade carregava as características principais das séries temporais dos dados analisados. Destaca-se que o método desenvolvido nesse estudo pode ser aplicado não apenas na região amazônica, mas também em outras áreas com desafios semelhantes relacionados à análise de séries temporais.

Agência de Fomento

browse.metadata.ispartofseries

item.page.isbn

Fonte

item.page.dc.location.country

Citação

SILVA, Vander Augusto Oliveira da. Clusterização de padrões espaço-temporais de precipitação na Amazônia via deep convolutional autoencoder. Orientador: Raphael Barros Teixeira. 2023. 81 f. Dissertação (Mestrado em Computação Aplicada) – Núcleo de Desenvolvimento Amazônico em Engenharia, Universidade Federal do Pará, Tucuruí, 2023. Disponível em: https://repositorio.ufpa.br/jspui/handle/2011/17389. Acesso em:.