Please use this identifier to cite or link to this item: https://repositorio.ufpa.br/jspui/handle/2011/10068
metadata.dc.type: Dissertação
Issue Date: 28-Mar-2018
metadata.dc.creator: DUTRA, Bruno Gomes
metadata.dc.contributor.advisor1: SILVEIRA, Antonio da Silva
Title: Metodologia para estimação de intenção de movimento e controle em tempo real de prótese mioelétrica de mão: uma abordagem linear, preditiva e estocástica
Other Titles: Methodology for estimation of intention of movement and real-time control of hand myoelectric prosthesis: a linear, predictive and stochastic approach
metadata.dc.description.sponsorship: 
Citation: DUTRA, Bruno Gomes. Metodologia para estimação de intenção de movimento e controle em tempo real de prótese mioelétrica de mão: uma abordagem linear, preditiva e estocástica. Orientador: Antonio da Silva Silveira. 2018. 122 f. Dissertação (Mestrado em Engenharia Elétrica.) - Instituto de Tecnologia, Universidade Federal do Pará, Belém, 2018. Disponível em: <http://repositorio.ufpa.br/jspui/handle/2011/10068>. Acesso em:.
metadata.dc.description.resumo: Os sinais musculares capturados a partir da eletromiografia (EMG) são bastante utilizados para detecção de contração muscular e intenção de movimento. Ao se utilizar tais sinais em tempo real, em controle de próteses, depara-se com um sinal amplificado e ruidoso. Com isso, precisa-se ter métodos recursivos, robustos a ruídos e algoritmos eficazes, para gerar comandos em tempo real para o atuador robótico. Nesta pesquisa, foram investigadas técnicas de identificação estocástica autoregressiva, filtro de Kalman, fusão sensorial e controle preditivo estocástico, aplicados para melhorar o processo de medição de sinais mioelétricos e dar robustez ao controle de próteses biomecatrônicas, buscando-se obter um processo aprimorado, menos sensível ao ruído e com redução de atrasos. Nesta dissertação o método proposto consiste em 4 estágios: (1) extração de características usando o método auto regressivo (AR), (2) fusão de dados com filtro de Kalman, (3) algoritmo de estimação de movimento e (4) controle preditivo de variância mínima generalizado aplicado em um servomecanismo. Os principais objetivos buscados foram: melhorar a relação sinal/ruído nos sinais mioelétricos (SMEs), obter uma interface homem-máquina de processamento em tempo real de baixo custo, evitar problemas de medição e minimizar o consumo de energia do sistema de controle. Foi desenvolvida uma planta didática, que é um sistema microcontrolado para aquisição, processamento de 4 canais de eletromiografia e controle de um servomecanismo acoplado em uma garra robótica. Foram realizados testes experimentais nesse processo biomecatrônico e pelos resultados obtidos pode-se confirmar que é possível estimar continuamente a intenção de movimento de abrir e fechar da mão e comprovam o bom desempenho de um controlador estocástico projetado para o controle da prótese mioelétrica.
Abstract: Muscle signals from electromyography (EMG) are widely used to detect muscle contraction and intention to motion. By using these signals in real time in prosthetic control, a low signal to noise ratio is commonly found. Thus, it is necessary to have recursive methods, robust to noise and efficient algorithms, to generate commands in real time for the robotic actuator. In this research, stochastic system indentification techniques, Kalman filter, sensor fusion and stochastic predictive control techniques were investigated and applied to improve the measurement and processing of electromyographic signals to increase robustness in the control of biomechatronic prostheses. Thus, it is an improved process, less sensitive to noise and with minimal delays and phase lags. In this methodology, a four-stage distribution method is used: (1) features extraction by using an autoregressive model (AR), (2) data fusion with the Kalman filter, (3) motion estimation algorithm, and (4) predictive control with the generalized minimum variance controller applied to a servomechanism. The main objectives were: to enhance the signal-to-noise ratio of EMG signals, to have a low-cost real-time processing man-machine interface, to avoid measurement problems and to minimize energy consumption of the control system. A didactic plant was developed, which is a 4 channel EMG data acquisition and processing system with a servomechanism and its control system coupled in a robotic jaw. Practical tests were conducted with the prototype and the results show that it is possible to continuously estimate the intention of opening and closing movement of the hand and can confirm the good performance of the stochastic controller designed for the control of the electric prosthesis.
Keywords: Sinais mioelétricos
Filtro de Kalman
Fusão sensorial
Identificação de sistemas
Controle de variância mínima
Electromyographic signals
Kalman filter
Sensor fusion
Systems identification
Minimum variance control
metadata.dc.subject.areadeconcentracao: SISTEMAS DE ENERGIA ELÉTRICA
metadata.dc.subject.linhadepesquisa: CONTROLE E AUTOMAÇÃO
metadata.dc.subject.cnpq: CNPQ::ENGENHARIAS::ENGENHARIA ELETRICA::ELETRONICA INDUSTRIAL, SISTEMAS E CONTROLES ELETRONICOS::CONTROLE DE PROCESSOS ELETRONICOS, RETROALIMENTACAO
metadata.dc.publisher.country: Brasil
Publisher: Universidade Federal do Pará
metadata.dc.publisher.initials: UFPA
metadata.dc.publisher.department: Instituto de Tecnologia
metadata.dc.publisher.program: Programa de Pós-Graduação em Engenharia Elétrica
metadata.dc.rights: Acesso Aberto
metadata.dc.source: 1 CD-ROM
Appears in Collections:Dissertações em Engenharia Elétrica (Mestrado) - PPGEE/ITEC

Files in This Item:
File Description SizeFormat 
Dissertacao_MetodologiaEstimacaoIntencao.pdf4,22 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons