Use este identificador para citar ou linkar para este item: https://repositorio.ufpa.br/jspui/handle/2011/15625
Registro completo de metadados
Campo DCValorIdioma
dc.creatorSOARES, Siomar de Castro-
dc.creatorABREU, Vinicius Augusto Carvalho de-
dc.creatorRAMOS, Rommel Thiago Juca-
dc.creatorCERDEIRA, Louise Teixeira-
dc.creatorSILVA, Artur Luiz da Costa da-
dc.creatorBAUMBACH, Jan-
dc.creatorTROST, Eva-
dc.creatorTAUCH, Andreas-
dc.creatorHIRATA JÚNIOR, Raphael-
dc.creatorGUARALDI, Ana Luiza de Mattos-
dc.creatorMIYOSHI, Anderson-
dc.creatorAZEVEDO, Vasco Ariston de Carvalho-
dc.date.accessioned2023-05-26T13:25:17Z-
dc.date.available2023-05-26T13:25:17Z-
dc.date.issued2012-02-
dc.identifier.citationSOARES, Siomar C. et al. PIPS: Pathogenicity Island Prediction Software. PLoS ONE, online, v. 7, n. 2, e30848, Feb. 2012. DOI: https://doi.org/10.1371/journal.pone.0030848. Disponível em: http://repositorio.ufpa.br/jspui/handle/2011/15625. Acesso em:.pt_BR
dc.identifier.issn1932-6203pt_BR
dc.identifier.urihttps://repositorio.ufpa.br/jspui/handle/2011/15625-
dc.description.abstractThe adaptability of pathogenic bacteria to hosts is influenced by the genomic plasticity of the bacteria, which can be increased by such mechanisms as horizontal gene transfer. Pathogenicity islands play a major role in this type of gene transfer because they are large, horizontally acquired regions that harbor clusters of virulence genes that mediate the adhesion, colonization, invasion, immune system evasion, and toxigenic properties of the acceptor organism. Currently, pathogenicity islands are mainly identified in silico based on various characteristic features: (1) deviations in codon usage, G+C content or dinucleotide frequency and (2) insertion sequences and/or tRNA genetic flanking regions together with transposase coding genes. Several computational techniques for identifying pathogenicity islands exist. However, most of these techniques are only directed at the detection of horizontally transferred genes and/or the absence of certain genomic regions of the pathogenic bacterium in closely related non-pathogenic species. Here, we present a novel software suite designed for the prediction of pathogenicity islands (pathogenicity island prediction software, or PIPS). In contrast to other existing tools, our approach is capable of utilizing multiple features for pathogenicity island detection in an integrative manner. We show that PIPS provides better accuracy than other available software packages. As an example, we used PIPS to study the veterinary pathogen Corynebacterium pseudotuberculosis, in which we identified seven putative pathogenicity islands.en
dc.description.provenanceSubmitted by Edisangela Bastos (edisangela@ufpa.br) on 2023-05-26T13:25:01Z No. of bitstreams: 2 file (1).pdf: 882441 bytes, checksum: ab3220b08d8400c7974bd799e681d994 (MD5) license_rdf: 811 bytes, checksum: e39d27027a6cc9cb039ad269a5db8e34 (MD5)en
dc.description.provenanceApproved for entry into archive by Edisangela Bastos (edisangela@ufpa.br) on 2023-05-26T13:25:17Z (GMT) No. of bitstreams: 2 file (1).pdf: 882441 bytes, checksum: ab3220b08d8400c7974bd799e681d994 (MD5) license_rdf: 811 bytes, checksum: e39d27027a6cc9cb039ad269a5db8e34 (MD5)en
dc.description.provenanceMade available in DSpace on 2023-05-26T13:25:17Z (GMT). No. of bitstreams: 2 file (1).pdf: 882441 bytes, checksum: ab3220b08d8400c7974bd799e681d994 (MD5) license_rdf: 811 bytes, checksum: e39d27027a6cc9cb039ad269a5db8e34 (MD5) Previous issue date: 2012-02en
dc.description.sponsorshipCNPq - Conselho Nacional de Desenvolvimento Científico e Tecnológicopt_BR
dc.description.sponsorshipFAPEMIG - Fundação de Amparo à Pesquisa do Estado de Minas Geraispt_BR
dc.languageengpt_BR
dc.publisherPublic Library of Sciencept_BR
dc.relation.ispartofPLoS ONEpt_BR
dc.rightsAcesso Abertopt_BR
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/br/*
dc.source.urihttps://journals.plos.org/plosone/article?id=10.1371/journal.pone.0030848#ackpt_BR
dc.subjectCorynebacterium pseudotuberculosispt_BR
dc.titlePIPS: Pathogenicity Island Prediction Softwarept_BR
dc.typeArtigo de Periódicopt_BR
dc.publisher.countryEstados unidospt_BR
dc.publisher.initialsPLOSpt_BR
dc.creator.Latteshttp://lattes.cnpq.br/4393381414254469pt_BR
dc.creator.Latteshttp://lattes.cnpq.br/2484200467965399pt_BR
dc.creator.Latteshttp://lattes.cnpq.br/1274395392752454pt_BR
dc.creator.Latteshttp://lattes.cnpq.br/5673401428259684pt_BR
dc.creator.Latteshttp://lattes.cnpq.br/7642043789034070pt_BR
dc.creator.Latteshttp://lattes.cnpq.br/8263618008894199pt_BR
dc.creator.Latteshttp://lattes.cnpq.br/pt_BR
dc.creator.Latteshttp://lattes.cnpq.br/pt_BR
dc.creator.Latteshttp://lattes.cnpq.br/4484092525465200pt_BR
dc.creator.Latteshttp://lattes.cnpq.br/8091118564093203pt_BR
dc.creator.Latteshttp://lattes.cnpq.br/9198272608157135pt_BR
dc.creator.Latteshttp://lattes.cnpq.br/1020477751003832pt_BR
dc.citation.volume7pt_BR
dc.citation.issue2pt_BR
dc.citation.spagee30848pt_BR
dc.identifier.doi10.1371/journal.pone.0030848pt_BR
dc.description.affiliationRAMOS, R. T. J.; CERDEIRA, L. T.; SILVA, A. L. C. Universidade Federal do Parápt_BR
dc.creator.ORCIDhttps://orcid.org/0000-0001-7299-3724pt_BR
dc.creator.ORCIDhttps://orcid.orgpt_BR
dc.creator.ORCIDhttps://orcid.org/0000-0002-8032-1474pt_BR
dc.creator.ORCIDhttps://orcid.org/0000-0002-4495-2615pt_BR
dc.creator.ORCIDhttps://orcid.orgpt_BR
dc.creator.ORCIDhttps://orcid.org/pt_BR
dc.creator.ORCIDhttps://orcid.orgpt_BR
dc.creator.ORCIDhttps://orcid.orgpt_BR
dc.creator.ORCIDhttps://orcid.orgpt_BR
dc.creator.ORCIDhttps://orcid.orgpt_BR
dc.creator.ORCIDhttps://orcid.orgpt_BR
dc.creator.ORCIDhttps://orcid.org/0000-0002-4775-2280pt_BR
Aparece nas coleções:Artigos Científicos - ICB

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
Article_PipsPathogenicityIsland.pdf861,76 kBAdobe PDFVisualizar/Abrir


Este item está licenciado sob uma Licença Creative Commons Creative Commons